Math, asked by Anonymous, 1 month ago

If , y = Sin ( π . Cos² x ) . Then find dy/dx

Answer :- 2πx ​

Answers

Answered by diyaparth5698
0

Answer:

0 I the write answer of the Question

Answered by Anonymous
3

 \bold \red{\frac{d}{dx} \left(y = \sin{\left(\pi \cos^{2}{\left(x \right)} \right)}\right)}

SOLUTION

Differentiate separately both sides of the equation (treat y as a function of x):

 \bold \red{\frac{d}{dx} \left(y{\left(x \right)}\right) = \frac{d}{dx} \left(\sin{\left(\pi \cos^{2}{\left(x \right)} \right)}\right)}

Differentiate the RHS of the equation.

 \bold \red{The  \: function  \: \sin{\left(\pi  \cos^{2}{\left(x \right)} \right)}is \:  the  \: composition \:  f{\left(g{\left(x \right)} \right)}  \: of  \: two \:  functions  \: f{\left(u \right)} = \sin{\left(u \right)} \:  and \:  g{\left(x \right)} = \pi \cos^{2}{\left(x \right)}}

Apply the chain rule

 \bold \red{ \small{\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)}}

 \bold{\color{red}{\left(\frac{d}{dx} \left(\sin{\left(\pi \cos^{2}{\left(x \right)} \right)}\right)\right)} = \color{red}{\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(\pi \cos^{2}{\left(x \right)}\right)\right)} \: </p><p>The  \: derivative  \: of  \: the  \: sine \:  is  \: \frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}}

 \bold{\color{red}{\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\pi \cos^{2}{\left(x \right)}\right) = \color{red}{\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(\pi \cos^{2}{\left(x \right)}\right)}

Return to the old variable:

 \bold \red{\cos{\left(\color{red}{\left(u\right)} \right)} \frac{d}{dx} \left(\pi \cos^{2}{\left(x \right)}\right) = \cos{\left(\color{red}{\left(\pi \cos^{2}{\left(x \right)}\right)} \right)} \frac{d}{dx} \left(\pi \cos^{2}{\left(x \right)}\right)</p><p>Apply \:  the \:  constant  \: multiple  \: rule \:  \frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right) with \:  c = \pi \: and \:  f{\left(x \right)} = \cos^{2}{\left(x \right)}}

 \bold \red{\cos{\left(\pi \cos^{2}{\left(x \right)} \right)} \color{red}{\left(\frac{d}{dx} \left(\pi \cos^{2}{\left(x \right)}\right)\right)} = \cos{\left(\pi \cos^{2}{\left(x \right)} \right)} \color{red}{\left(\pi \frac{d}{dx} \left(\cos^{2}{\left(x \right)}\right)\right)} \: </p><p>The  \: function \cos^{2}{\left(x \right)}  \: is  \: the  \: composition \:  f{\left(g{\left(x \right)} \right)} \: of  \: two \:  functions \:  f{\left(u \right)} = u^{2} and g{\left(x \right)} = \cos{\left(x \right)}}

Apply the chain rule

  \small\bold\red{\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)}

 \bold \red{\pi \cos{\left(\pi \cos^{2}{\left(x \right)} \right)} \color{red}{\left(\frac{d}{dx} \left(\cos^{2}{\left(x \right)}\right)\right)} = \pi \cos{\left(\pi \cos^{2}{\left(x \right)} \right)} \color{red}{\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}</p><p>Apply  \: the \:  power \:  rule \:  \frac{d}{du} \left(u^{n}\right) = n u^{n - 1} \:  with \:  n = 2}

 \bold \red{\pi \cos{\left(\pi \cos^{2}{\left(x \right)} \right)} \color{red}{\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) = \pi \cos{\left(\pi \cos^{2}{\left(x \right)} \right)} \color{red}{\left(2 u\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right)}

Return to the old variable:

 \bold \red{2 \pi \cos{\left(\pi \cos^{2}{\left(x \right)} \right)} \color{red}{\left(u\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) = 2 \pi \cos{\left(\pi \cos^{2}{\left(x \right)} \right)} \color{red}{\left(\cos{\left(x \right)}\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right)</p><p>The  \: derivative  \: of  \: the \:  cosine \:  is  \: \frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}}

 \bold \red{2 \pi \cos{\left(x \right)} \cos{\left(\pi \cos^{2}{\left(x \right)} \right)} \color{red}{\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} = 2 \pi \cos{\left(x \right)} \cos{\left(\pi \cos^{2}{\left(x \right)} \right)} \color{red}{\left(- \sin{\left(x \right)}\right)}</p><p>Thus, \frac{d}{dx} \left(\sin{\left(\pi \cos^{2}{\left(x \right)} \right)}\right) = - 2 \pi \sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(\pi \cos^{2}{\left(x \right)} \right)}}

Therefore,

 \bold \red{{\frac{dy}{dx} = - 2 \pi \sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(\pi \cos^{2}{\left(x \right)} \right)}}}

Answer

  \bold \red{{\frac{dy}{dx} = - 2 \pi \sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(\pi \cos^{2}{\left(x \right)} \right)}}}

Similar questions