Math, asked by rasika3, 1 year ago

if y = sin ( log 4 x) find dy/ dx

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\mathsf{y=sin(log_4x)}

\underline{\textbf{To find:}}

\mathsf{\dfrac{dy}{dx}}

\underline{\textbf{Solution:}}

\underline{\textbf{Chain rule:}}

\mathsf{\dfrac{d[f(g(x))]}{dx}=f'(g(x))\;g'(x)}

\underline{\textbf{Concept used:}}

\mathsf{1.\;\dfrac{d(sin\,x)}{dx}=cos\,x}

\mathsf{2.\;\dfrac{d(log_ax)}{dx}=\dfrac{1}{x}log_ae\;}

\mathsf{Consider,}

\mathsf{y=sin(log\,4x)}

\textsf{Differentiate with respect to 'x'}

\mathsf{\dfrac{dy}{dx}=cos(log_4x){\times}\dfrac{1}{x}log_4e}

\implies\boxed{\mathsf{\dfrac{dy}{dx}=\dfrac{cos(log\,4x)\;log_4e}{x}}}

Similar questions