If y = sin theta + root 3 cos theta then what is its maximum value
Answers
Answered by
0
✌️ ANSWER ✌️
Y =2/(sinθ + √3cosθ)
Y =2/(sinθ + √3cosθ)So, -√(1 + √3²) ≤ (sinθ + √3cosθ) ≤ √(1 + √3²)
Y =2/(sinθ + √3cosθ)So, -√(1 + √3²) ≤ (sinθ + √3cosθ) ≤ √(1 + √3²)-2 ≤ (sinθ + √3cosθ) ≤ 2
Y =2/(sinθ + √3cosθ)So, -√(1 + √3²) ≤ (sinθ + √3cosθ) ≤ √(1 + √3²)-2 ≤ (sinθ + √3cosθ) ≤ 2 So, minimum value of (sinθ + √3cosθ) = -2
Y =2/(sinθ + √3cosθ)So, -√(1 + √3²) ≤ (sinθ + √3cosθ) ≤ √(1 + √3²)-2 ≤ (sinθ + √3cosθ) ≤ 2 So, minimum value of (sinθ + √3cosθ) = -2 Maximum value of (sinθ + √3cosθ) = 2
Y =2/(sinθ + √3cosθ)So, -√(1 + √3²) ≤ (sinθ + √3cosθ) ≤ √(1 + √3²)-2 ≤ (sinθ + √3cosθ) ≤ 2 So, minimum value of (sinθ + √3cosθ) = -2 Maximum value of (sinθ + √3cosθ) = 2 For getting minimum value of y , we have to use maximum value of (sinθ + √3cosθ) .
So, minimum value of y = 2/-2 = 1 .
THANK YOU ✌️
HOPE IT HELPS YOU ✌️
FOLLOW ME ⭐
BRAINLIEST PLEASE ❤️
Similar questions
Math,
5 months ago
Physics,
5 months ago
Math,
5 months ago
Computer Science,
10 months ago
English,
10 months ago