Physics, asked by ARAVINDA8918, 10 months ago

If y = sin theta + root 3 cos theta then what is its maximum value

Answers

Answered by candygirl012
0

✌️ ANSWER ✌️

Y =2/(sinθ + √3cosθ)

Y =2/(sinθ + √3cosθ)So, -√(1 + √3²) ≤ (sinθ + √3cosθ) ≤ √(1 + √3²)

Y =2/(sinθ + √3cosθ)So, -√(1 + √3²) ≤ (sinθ + √3cosθ) ≤ √(1 + √3²)-2 ≤ (sinθ + √3cosθ) ≤ 2

Y =2/(sinθ + √3cosθ)So, -√(1 + √3²) ≤ (sinθ + √3cosθ) ≤ √(1 + √3²)-2 ≤ (sinθ + √3cosθ) ≤ 2 So, minimum value of (sinθ + √3cosθ) = -2

Y =2/(sinθ + √3cosθ)So, -√(1 + √3²) ≤ (sinθ + √3cosθ) ≤ √(1 + √3²)-2 ≤ (sinθ + √3cosθ) ≤ 2 So, minimum value of (sinθ + √3cosθ) = -2 Maximum value of (sinθ + √3cosθ) = 2

Y =2/(sinθ + √3cosθ)So, -√(1 + √3²) ≤ (sinθ + √3cosθ) ≤ √(1 + √3²)-2 ≤ (sinθ + √3cosθ) ≤ 2 So, minimum value of (sinθ + √3cosθ) = -2 Maximum value of (sinθ + √3cosθ) = 2 For getting minimum value of y , we have to use maximum value of (sinθ + √3cosθ) .

So, minimum value of y = 2/-2 = 1 .

THANK YOU ✌️

HOPE IT HELPS YOU ✌️

FOLLOW ME

BRAINLIEST PLEASE ❤️

Similar questions