if y= (sin x)^sin x then find dy/dx
Answers
Answer:
y = (sin x)^sin x
applying log on both sides,
log y = log (sin x)^sin x [ product rule ]
=> log y = sin x log sin x [ log m^n = n log m ]
differentiating both sides wet x,
1/y log y = sin x d/dx(log sin x) + log sin x d/dx(sinx)
=> 1/y dy/dx = sin x * 1/sin x* cosx + log sin x*cos x [chain rule log sin x=1/sin x*cosx ]
=> 1/y dy/dx = cos x + cos x log sin x
=> dy/dy = y [ cos x + cos x log sin x ]
=> dy/dx=(sin x)^sin x [cos x+cos x log sin x ]
Answer:
( sin x )^sin x ( cos x . ㏑ sin x + cos x )
Step-by-step explanation:
Given :
y = ( sin x )^sin x
Taking ㏑ both side we get :
= > ㏑ y = ㏑ ( sin x )^sin x
= > ㏑ y = ( sin x ) ㏑ sin x
Diff. w.r.t. x :
= > 1 / y ( d y / d x ) = ㏑ sin x . ( sin x )' + sin x ( ㏑ sin x )'
= > 1 / y ( d y / d x ) = cos x . ㏑ sin x + 1 / sin . ( sin x ) . cos x
= > 1 / y ( d y / d x ) = cos x . ㏑ sin x + cos x
Putting value of y = ( sin x )^sin x
= > d y / d x = ( sin x )^sin x ( cos x . ㏑ sin x + cos x )
Hence we get required answer!