if y = (tan-1 x)^2, prove that (1+x^2)^2 d2y/dx2+ 2x(1+x^2) dy/dx = 2
Answers
Answered by
53
y = (tan⁻¹ x)²
dy/dx = 2 (Tan⁻¹ x) / (1+x²)
d²y/dx² = 2 [ (1+x²) * 1/(1+x²) - Tan⁻¹ x * (2x) ] / (1+x²)²
= 2 [ 1 - 2 x Tan⁻¹ x ] /(1+x²)²
LHS = (1+x²)² y'' + 2x (1+x²) y'
= 2 (1 - 2 x Tan⁻¹ x) + 2x (1+x²) * 2 Tan⁻¹ x * 1/(1+x²)
= 2
proved.
dy/dx = 2 (Tan⁻¹ x) / (1+x²)
d²y/dx² = 2 [ (1+x²) * 1/(1+x²) - Tan⁻¹ x * (2x) ] / (1+x²)²
= 2 [ 1 - 2 x Tan⁻¹ x ] /(1+x²)²
LHS = (1+x²)² y'' + 2x (1+x²) y'
= 2 (1 - 2 x Tan⁻¹ x) + 2x (1+x²) * 2 Tan⁻¹ x * 1/(1+x²)
= 2
proved.
kvnmurty:
click o n red heart thanks above pls
Answered by
35
y =(tan^-1x)²
differentiate wrt x
dy/dx =2tan^-1x /(1+ x²)
(1 + x²)dy/dx = 2tan^-1x
again differentiate wrt x
( 1 + x²)d²y/dx² + ( 0 + 2x)dy/dx = 2/( 1+x²)
( 1 + x²)² d²y/dx² + 2x( 1 + x²)dy/dx = 2
hence proved
differentiate wrt x
dy/dx =2tan^-1x /(1+ x²)
(1 + x²)dy/dx = 2tan^-1x
again differentiate wrt x
( 1 + x²)d²y/dx² + ( 0 + 2x)dy/dx = 2/( 1+x²)
( 1 + x²)² d²y/dx² + 2x( 1 + x²)dy/dx = 2
hence proved
Similar questions