Math, asked by aman9122, 1 year ago

if y=tan(sin^-1 x) then find dy/ dx​

Answers

Answered by Sharad001
52

Question :-

 \sf \: if  \:  y \:  =  \tan( { \sin}^{ - 1} x)  \:  \: then \: find \:  \frac{dy}{dx}  \\

Answer :-

\boxed{ \sf  \frac{dy}{dx}  =  \frac{ { \sec}^{2} ( { \sin}^{ - 1} x)}{ \sqrt{1 -  {x}^{2} } } } \:  \\

Used Formula :-

 \star \sf \:  \frac{d}{dx}  \tan x =  { \sec}^{2}  x \\  \\  \star \sf \:  \frac{d}{dx}  \:  { \sin}^{ - 1} x =  \frac{1}{ \sqrt{1 -  {x}^{2} } }

Solution :-

We have ,

 \sf \mapsto \: y \:  =  \tan( { \sin}^{ - 1} x)  \: \:  \\  \\ \bf \red{  differentiate \: with \:} respect \: to \: x \\  \\  \mapsto \sf \frac{dy}{dx}  =  \frac{d}{dx}\tan( { \sin}^{ - 1} x)  \: \\  \\  \mapsto \: \sf  \frac{dy}{dx}  =  { \sec}^{2} ( { \sin}^{ - 1} x)   \:  \frac{d}{dx}  ( { \sin}^{ - 1} x)  \: \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \boxed{\because \sf \frac{d}{dx} ( { \sin}^{ - 1} x)   =  \frac{1}{ \sqrt{1 -  {x}^{2} } } } \\  \therefore \:  \\  \:  \\  \mapsto \: \sf  \frac{dy}{dx}  =  { \sec}^{2} ( { \sin}^{ - 1} x)  \:  \frac{1}{ \sqrt{1 -  {x}^{2} } }  \\  \\  \mapsto \boxed{ \sf  \frac{dy}{dx}  =  \frac{ { \sec}^{2} ( { \sin}^{ - 1} x)}{ \sqrt{1 -  {x}^{2} } } }

\boxed{\begin{minipage}{7 cm}\rm \red{Some \: same \: questions \: for \: practice }\\ \\</p><p>(1)\rm  If \: y = \sin(\tan^{-1}x) \:,find \:\frac{dy}{dx} \\ \\ </p><p>(2)\rm If \: y = 2x^{2} + 3x + 5 \: ,find \: \frac{dy}{dx} \\ \\ </p><p>(3)\rm  if , \: y = x^{x} \: , \:find \: \frac{dy}{dx}\\ \\ </p><p>\end{minipage}}

Similar questions