If y=tanA, then dy/dA at A=pi/4 will be ??
a) 1/2
b) 1
c) 2
d) 3/2
Answers
Given :
y= tan A
To find :
dy/dA at A=π/4
Solution
We have ,
Now Differentiate with respect to A
We have to find dy/dA at A= π/4
Correct option c) dy/dA( at A=π/4)=2
Let y=f(t) ,t = g(u) and u =m(x) ,then
Explanation:
Given :
y= tan A
To find :
dy/dA at A=π/4
Solution
We have ,
\sf\:y=\tan\:Ay=tanA
Now Differentiate with respect to A
\sf\dfrac{dy}{dA}=\dfrac{d(\tan\:A)}{dA}
dA
dy
=
dA
d(tanA)
\sf\dfrac{dy}{dA}=\sec^2A
dA
dy
=sec
2
A
We have to find dy/dA at A= π/4
\sf\dfrac{dy}{dA}(A=\dfrac{\pi}{4})=(\sec\dfrac{\pi}{4})^2
dA
dy
(A=
4
π
)=(sec
4
π
)
2
\sf\dfrac{dy}{dA}(at\:A=\dfrac{\pi}{4})=(\sqrt{2})^2
dA
dy
(atA=
4
π
)=(
2
)
2
\sf\dfrac{dy}{dA}(at\:A=\dfrac{\pi}{4})=2
dA
dy
(atA=
4
π
)=2
Correct option c) dy/dA( at A=π/4)=2
{\purple{\boxed{\large{\bold{\dfrac{dy}{dA}(at\:A=\dfrac{\pi}{4})=2}}}}}
dA
dy
(atA=
4
π
)=2
\rule{200}2
{\underline{\sf{Formula's}}}
Formula
′
s
1)\sf\:\frac{d(x {}^{n} )}{dx} = nx {}^{n - 1}1)
dx
d(x
n
)
=nx
n−1
2)\sf\:\frac{d(constant)}{dx} = 02)
dx
d(constant)
=0
3) \sf\dfrac{d(\cos\:x)}{dx} =-\sin\:x3)
dx
d(cosx)
=−sinx
\sf4)\dfrac{d(\tan\:x)}{dx}=\sec^2\:x4)
dx
d(tanx)
=sec
2
x
{\red{\boxed{\large{\bold{Composite\: Function (Chain\:Rule)}}}}}
CompositeFunction(ChainRule)
Let y=f(t) ,t = g(u) and u =m(x) ,then
\sf\:\dfrac{dy}{dx} = \dfrac{dy}{dt} \times \dfrac{dt}{du} \times \dfrac{du}{dx}
dx
dy
=
dt
dy
×
du
dt
×
dx
du