Math, asked by aditya221551, 10 months ago

if y =
 {e}^{log5x}  +  {e}^{log7x}
then dy/dx = ?​

Answers

Answered by Anonymous
2

Given :-

y =  {e}^{ log(5x) }  +  {e}^{ log(7x) }

To Find :-

 \frac{dy}{dx}  = </strong><strong>?</strong><strong>

\rule{200}{1}

Solution :-

y =  {e}^{ log(5x) }  +  {e}^{ log(7x) }  \:

We know that -

  •  \frac{d}{dx} ( {e}^{x} ) =  {e}^{x}

 \frac{dy}{dx}  = {e}^{ log(5x) } \times  \frac{d}{dx}( log(5x))   +  {e}^{ log(7x) }  \times  \frac{d}{dx} ( log(7x))

We know that -

  •  \frac{d}{dx}  log(x)  =  \frac{1}{x}

 \frac{dy}{dx}  =  {e}^{ log(5x) }  \times  \frac{1}{5x}  \times  \frac{d}{dx} (5x) +  {e}^{ log(7x) } \times  \frac{1}{7x}   \times  \frac{d}{dx} (7x) \\  \\  \frac{dy}{dx}  =  {e}^{ log(5x) }  \times  \frac{1}{5x}  \times 5 +  {e}^{ log(7x) }  \times  \frac{1}{7x}  \times 7 \\  \\  \frac{dy}{dx}  =  \frac{1}{x}  {e}^{ log(5x) }  +  \frac{1}{x}  {e}^{ log(7x) }  \\  \\  \frac{dy}{dx}  =  \frac{1}{x} ( {e}^{ log(5x)   }  + {e}^{ log(7x)  } )

Or we can write it as -

 \frac{dy}{dx}  =  \frac{1}{x}\times y

\boxed{ \frac{dy}{dx}  =  \frac{y}{x}}

\rule{200}{1}

Mark as Brainliest !! ✨✨

Similar questions