Math, asked by satan25, 4 months ago

if y =
 \frac{cosx}{sinx + cosx}
then find
 \frac{dy}{dx}

Answers

Answered by Anonymous
54

 \large \underline \bold{Solution}:-

\sf{y = \dfrac{Cosx}{Sinx + Cosx}}

\sf{Differential \: with \: respect \: to \: x -}

\sf{\bigg(\dfrac{dy}{dx}\bigg) = \dfrac{d}{dx}\bigg(\dfrac{Cosx}{Sinx + Cosx}\bigg)}

 \large \underline \bold{Usable \: Formula}:-

\: \: \: \: \: \: \large\boxed{\sf\red{\dfrac{d}{dv}\bigg(\dfrac{u}{v}\bigg) =\bigg(\dfrac{v \dfrac{d}{dv} u - u \dfrac{d}{dv} v }{v^{2}}\bigg)}}

\: \: \: \large\boxed{\sf\red{\dfrac{d}{dx}(Sinx) = Cosx}}

\: \: \: \large\boxed{\sf\red{\dfrac{d}{dx}(Cosx) = -Sinx}}

\: \: \large\boxed{\sf\red{Sin^{2} x + Cos^{2} x = 1}}

\sf{So \: ,}

\sf{\bigg(\dfrac{dy}{dx}\bigg) = \dfrac{(Sinx + Cosx) \dfrac{d}{dx}(Cosx) - Cosx \dfrac{d}{dx}(Sinx + Cosx)}{(Sinx + Cosx)^{2}}}

\sf{\bigg(\dfrac{dy}{dx}\bigg) = \dfrac{(Sinx + Cosx)(-Sinx) - Cosx(Cosx - Sinx)}{(Sinx + Cosx)^{2}}}

\sf{\bigg(\dfrac{dy}{dx}\bigg) = \dfrac{-Sin^{2} x - \cancel{Sinx Cosx} - Cos^{2} x + \cancel{Sinx Cosx}}{(Sinx + Cosx)^{2}}}

\sf{\bigg(\dfrac{dy}{dx}\bigg) = \dfrac{- Sin^{2} x - Cos^{2} x}{(Sinx + Cosx)^{2}}}

\sf{\bigg(\dfrac{dy}{dx}\bigg) = \dfrac{-(Sin^{2} x + Cos^{2} x)}{(Sinx + Cosx)^{2}}}

 \small \bold{\bigg(\dfrac{dy}{dx}\bigg) = \dfrac{-1}{(Sinx + Cosx)^{2}}}

Similar questions