Math, asked by Anonymous, 9 hours ago

If y = \sqrt{x^2+1}- \log \bigg \lgroup \frac{1}{x} + \sqrt{1+\frac{1}{x^2}} \bigg \rgroup ,then find dy/dx

Answers

Answered by sajan6491
7

We have,

 \sf{y = \sqrt{x^2+1}- \log \bigg \lgroup \frac{1}{x} + \sqrt{1+\frac{1}{x^2}} \bigg \rgroup}

 \sf{ \implies y = \sqrt{x^2+1}- \log \bigg \lgroup   \frac{1  +  \sqrt{ {x}^{2}  + 1} }{x} \bigg \rgroup}

 \sf{ \implies y = \sqrt{x^2+1}- \log \bigg \lgroup   1 +  \sqrt{ {x}^{2}  + 1}  \bigg \rgroup} +  \log x

On differentiating w.r.t. x, we have

  \sf\frac{dy}{dx}  =  \frac{1}{2 \sqrt{ {x}^{2} + 1 } }  \times 2x -  \frac{1}{( \sqrt{ {x}^{2}  + 1}  + 1)}  \times  \frac{1}{2 \sqrt{ {x}^{2}  + 1} }  \times 2x +  \frac{1}{x}

  \sf=  \frac{x}{ \sqrt{ {x}^{2}  + 1} }   -  \frac{x}{ \sqrt{ {x}^{2}   + 1 } (\sqrt{ {x}^{2}  + 1}  + 1)} +  \frac{1}{x}

  \sf=  \frac{x}{ \sqrt{ {x}^{2}  + 1} }   -  \frac{x}{ \sqrt{ {x}^{2}   + 1 } (\sqrt{ {x}^{2}  + 1}  + 1)}  \times  \frac{( \sqrt{ {x}^{2}  + 1}  - 1)}{( \sqrt{ {x}^{2}  + 1}  - 1)}   +  \frac{1}{x}

  \sf=  \frac{x}{ \sqrt{ {x}^{2}  + 1} }   -   \frac{x( \sqrt{ {x}^{2}  + 1} - 1) }{( \sqrt{ {x}^{2}  + 1} )( {x}^{2} )}   +  \frac{1}{x}

  \sf=  \frac{x}{ \sqrt{ {x}^{2}  + 1} }   -   \frac{( \sqrt{ {x}^{2}  + 1} - 1) }{x\sqrt{ {x}^{2}  + 1}  {}^{} }   +  \frac{1}{x}

 \sf =  \frac{ {x}^{2} + 1  -  \sqrt{ {x}^{2}  + 1}   +  \sqrt{ {x}^{2}  + 1}  }{x \sqrt{ {x}^{2} + 1 } }

 \sf =  \frac{ {x}^{2}  + 1}{x \sqrt{ {x}^{2} + 1 }  }

  \sf=  \frac{ \sqrt{ {x}^{2}  + 1}  }{x}

Answered by velpulaaneesh123
2

Answer:

\frac{\text{d}x}{\text{d}y} = \frac{\sqrt{x^2+1} }{x}

Step-by-step explanation:

\bold{We\:have,}=y = \sqrt{x^2+1}- \log \bigg \lgroup \frac{1}{x} + \sqrt{1+\frac{1}{x^2}} \bigg \rgroup

\Rightarrow y = \sqrt{x^2+1}- \log \bigg \lgroup \frac{1+\sqrt{x^2+1} }{x} \bigg \rgroup

\Rightarrow y = \sqrt{x^2+1}- \log \bigg \lgroup 1+\sqrt{x^2+1}+\log x \bigg \rgroup

On differentiating w.r.t. x, we have,

\frac{\text{d}x}{\text{d}y}  = \frac{\sqrt{x^2+1} }{x}

\red{:\longmapsto}\green{\boxed{\frac{dy}{dx}  = \frac{\sqrt{x^2+1} }{x}}

Similar questions