Math, asked by StrongGirl, 6 months ago

If y = u bisects the area bounded by region given by x2 < y < 2x then:

Answers

Answered by shadowsabers03
5

Consider the inequality,

\longrightarrow x^2&lt;2x

\longrightarrow x^2-2x&lt;0

\longrightarrow x(x-2)&lt;0

\Longrightarrow x\in(0,\ 2)

The equality is satisfied at x\in\{0,\ 2\}.

Then the area is equal to,

\displaystyle\longrightarrow A=\int\limits_0^2(2x-x^2)\ dx

\displaystyle\longrightarrow A=\left[x^2-\dfrac{x^3}{3}\right]_0^2

\displaystyle\longrightarrow A=\dfrac{4}{3}

Point of intersection of y=u and y=x^2 is (\sqrt u,\ u).

Point of intersection of y=u and y=2x is \left(\dfrac{u}{2},\ u\right).

The line y=u bisects the area, then,

\displaystyle\longrightarrow \dfrac{A}{2}=\int\limits_0^{\frac{u}{2}}2x\ dx+\int\limits_{\frac{u}{2}}^{\sqrt u}u\ dx-\int\limits_0^{\sqrt u}x^2\ dx

\displaystyle\longrightarrow \dfrac{2}{3}=\Big[x^2\Big]_0^{\frac{u}{2}}+\Big[ux\Big]_{\frac{u}{2}}^{\sqrt u}-\left[\dfrac{x^3}{3}\right]_0^{\sqrt u}

\displaystyle\longrightarrow \dfrac{2}{3}=\dfrac{u^2}{4}+u\sqrt u-\dfrac{u^2}{2}-\dfrac{u\sqrt u}{3}

\displaystyle\longrightarrow \dfrac{2}{3}=-\dfrac{u^2}{4}+\dfrac{2u\sqrt u}{3}

\displaystyle\longrightarrow\underline{\underline{3u^2-8u\sqrt u+8=0}}

Similar questions