Math, asked by fer46, 10 months ago

If y = under root( 1- cos2x / 1+ cis 2x), then find its derivative with respect to x, i.e find dy/dx.​

Answers

Answered by KINGofDEVIL
49

 \huge{ \orange{ \underline{ \overline{ \boxed{ \mathbb{ \blue{ANSWER}}}}}}}

 \sf{ \green{ \underline{ \underline{GIVEN : }}}}

 ↠ \:   \sf \: y \:  =  \:  \sqrt{ \frac{1  \: -  \:  \cos2x }{1 \:  + \:   \cos2x} }

 \sf{ \green{ \underline{ \underline{TO \:  FIND  : }}}}

↠  \sf \: \frac{dy}{dx}

 \sf{ \green{ \underline{ \underline{SOLUTION : }}}}

 \implies \:  \:   \sf \: y \:  =  \:  \sqrt{ \frac{1  \: -  \:  \cos2x }{1 \:  + \:   \cos2x} }

[Using the formula of cos2x and putting the values we get,]

\implies \:  \:   \sf \: y \:  =  \:  \sqrt{ \frac{1  \: -  \: (1 - 2 {sin}^{2}x) }{1 \:  + \: (2 {cos}^{2}x \:  - 1) } }

\implies \:  \:   \sf \: y \:  =  \:  \sqrt{ \frac{ \cancel1  \: -  \cancel1   \: +   \: 2 {sin}^{2}x) }{ \cancel1 \:  + \: 2 {cos}^{2}x \:  -  \:  \cancel1 } }

\implies \:  \:   \sf \: y \:  =  \:  \sqrt{ \frac{ 2 {sin}^{2}x}{2 {cos}^{2}x} }

\implies \:  \:   \sf \: y \:  =  \:  \sqrt{ \frac{ \cancel 2 {sin}^{ 2}x}{ \cancel2 {cos}^{2}x} }

 \implies \:  \sf \: y =  \sqrt{ { \tan}^{2}x }

  \boxed{ \therefore \: \:  \sf \: y \:  =  \tan  x}

Now, let us find out derivative of y with respect to x.

 \rightarrow \:  \sf \:  \frac{d}{dx} (y) \:  =  \:  \frac{d}{dx} (tanx)

  \boxed{\therefore \:  \sf \:  \frac{dy}{dx}\:  =  \:   {sec}^{2} x}

______________________________________

 \sf{ \green{\boxed{FORMULA \:  \:  USED :}}}

 ↠  \sf{\blue{ \: cos2x \:  =  \: 1  \:  -   \: 2 { \sin}^{2}x}}

↠  \sf{\blue{ \: cos2x \:  = \: 2 { \cos}^{2}x \:  -  \: 1}}

↠  \sf{\blue{ \:  \frac{d}{dx}(tanx)  =  {\sec}^{2} x}}

#answerwithquality #BAL

Similar questions