Physics, asked by apurvv8903, 1 year ago

If y = x^3 -3x. Find the value of y at its local maxima.​

Answers

Answered by MaheswariS
1

Answer:

Local maximum value = 2

Explanation:

If y = x^3 -3x. Find the value of y at its local maxima.​

y = x^3 -3x

y'=3x^2-3

y''=6x

y'=0

\implies\;3x^2-3=0

\implies\;x^2-1=0

\implies\;x^2=1

\implies\;x=\pm1

when x=1

y''=6>0

\implies\:\text{y has local minimum at x=1}

when x=-1

y''=-6<0

\implies\:\text{y has local maximum at x=-1}

\therefore\text{Local maximum}=(-1)^3-3(-1)=-1+3=2

Similar questions