Math, asked by maniksinghahu, 10 months ago

If y=x.cosx,prove :x^2 d^2y/dx^2-2xdy/dx+ (x^2 + 2)y=0​

Answers

Answered by BendingReality
13

Answer:

x²  d² y / d x² - 2 x ( d y / d x ) + ( x² + 2 ) y = 0 [ Proved! ]

Step-by-step explanation:

Given :

y = x . cos x

Diff. w.r.t. x :

d y / d x = x ( cos x )' + cos x ( x )'

= > d y / d x = - x . sin x + cos x

= > sin x = - 1 / x ( d y / d x - cos x ) .... ( i )

Now second order derivative :

d² y / d x² = - ( sin x ( x )' + x ( sin x )' + ( cos x )'

= > d² y / d x² = - ( sin x  + x . cos x ) - sin x

= > d² y / d x² = - x . cos x  - 2 sin x

Now :

We can write ' x . cos x ' = y [ Given : ]

Also ' cos x ' = y / x

= >  d² y / d x² = - x . cos x  - 2 sin x

= >  d² y / d x² = - y  - 2 sin x

= >  d² y / d x² = - y  - 2 .  [ - 1 / x ( d y / d x - cos x ) ]

= >   d² y / d x² = - y  - 2 .  [ - 1 / x ( d y / d x - y / x ) ]

= >  d² y / d x² = - y + ( 2 / x ) ( d y / d x ) - 2 y / x²

= >  d² y / d x²  + y - ( 2 / x ) ( d y / d x ) + 2 y / x² = 0

= > x²  d² y / d x² + x² y - 2 x ( d y / d x ) + 2 y = 0

= >  x²  d² y / d x² - 2 x ( d y / d x ) + ( x² + 2 ) y = 0

Hence proved!

Similar questions