If y=x.cosx,prove :x^2 d^2y/dx^2-2xdy/dx+ (x^2 + 2)y=0
Answers
Answer:
x² d² y / d x² - 2 x ( d y / d x ) + ( x² + 2 ) y = 0 [ Proved! ]
Step-by-step explanation:
Given :
y = x . cos x
Diff. w.r.t. x :
d y / d x = x ( cos x )' + cos x ( x )'
= > d y / d x = - x . sin x + cos x
= > sin x = - 1 / x ( d y / d x - cos x ) .... ( i )
Now second order derivative :
d² y / d x² = - ( sin x ( x )' + x ( sin x )' + ( cos x )'
= > d² y / d x² = - ( sin x + x . cos x ) - sin x
= > d² y / d x² = - x . cos x - 2 sin x
Now :
We can write ' x . cos x ' = y [ Given : ]
Also ' cos x ' = y / x
= > d² y / d x² = - x . cos x - 2 sin x
= > d² y / d x² = - y - 2 sin x
= > d² y / d x² = - y - 2 . [ - 1 / x ( d y / d x - cos x ) ]
= > d² y / d x² = - y - 2 . [ - 1 / x ( d y / d x - y / x ) ]
= > d² y / d x² = - y + ( 2 / x ) ( d y / d x ) - 2 y / x²
= > d² y / d x² + y - ( 2 / x ) ( d y / d x ) + 2 y / x² = 0
= > x² d² y / d x² + x² y - 2 x ( d y / d x ) + 2 y = 0
= > x² d² y / d x² - 2 x ( d y / d x ) + ( x² + 2 ) y = 0
Hence proved!