If y= x3/2 then find the value of dy/dx
Answers
Answered by
3
Answer:
x
(
x
2
−3)
.{
(
x
2
−3)
x
+(2x)logx}+
(x−3)
x
2
.{
x
2
(x−3)
+2xlog(x−3)}
x(x2-3).{(x2-3)x+(2x)logx}+(x-3)x2.{x2(x-3)+2xlog(x-3)}
Solution :
Let
u=
x
(
x
2
−3)
andv=
(x−3)
x
2
.
u=x(x2-3)andv=(x-3)x2.
Then,
y=u+v
y=u+v
Now,
u=
x
(
x
2
−3)
u=x(x2-3)
⇒logu=(
x
2
−3)logx
⇒logu=(x2-3)logx
⇒
1
u
.
du
dx
=(
x
2
−3).
1
x
+(2x)logx
⇒1u.dudx=(x2-3).1x+(2x)logx
⇒
du
dx
=u.[
x
2
−3
x
+(2x)logx]=
x
(
x
2
−3)
.{
(
x
2
−3)
x
+(2x)logx}.
⇒dudx=u.[x2-3x+(2x)logx]=x(x2-3).{(x2-3)x+(2x)logx}.
And,
v=
(x−3)
x
2
v=(x-3)x2
⇒logv=
x
2
log(x−3)
⇒logv=x2log(x-3)
⇒
1
v
.
dv
dx
=
x
2
.
1
(x−3)
+2xlog(x−3)
⇒1v.dvdx=x2.1(x-3)+2xlog(x-3)
⇒
dv
dx
=v.{
x
2
(x−3)
+2xlog(x−3)}=
(x−3)
x
2
{
x
2
(x−3)
+2xlog(x−3)}
Step-by-step explanation:
Similar questions