Math, asked by kansalmayank05, 10 months ago

if y=xe^y find dy/dx​

Answers

Answered by krishnavamsi16
0

Answer:

dy\dx=e^y.1+x.y.e^y.dy\dx

dy\dx(1-x.y.e^y)=e^y

dy\dx=e^y\(1-x.y.e^y)

Answered by lalitkishore
5

Answer:

\frac{dy}{dx} =  \frac{y}{x(1 - y)}

Step-by-step solutions:

y = x {e}^{y}  \\    = > {e}^{y}  =  \frac{y}{x}

\frac{dy}{dx} =  \: \frac{d(x {e}^{y}) }{dx} \\ \frac{dy}{dx} = \: x\frac{d( {e}^{y})}{dx} \:  +  {e}^{y} \frac{d(x)}{dx}  \\ \frac{dy}{dx} = \: x {e}^{y} \frac{dy}{dx}  +  {e}^{y} (1) \\ \frac{dy}{dx} \:  -  \frac{dy(x {e}^{y})}{dx} \: = \:  {e}^{y}  \\ \frac{dy(1 - x {e}^{y})}{dx} = \:  {e}^{y}  \\ \frac{dy(1 - y)}{dx} = \:   \frac{y}{x}  \\ \frac{dy}{dx} = \frac{y}{x(1 - y)}

Similar questions