Math, asked by yash4168, 1 year ago

if y =xsinx^2 then the value of dy/dx is ​

Attachments:

Answers

Answered by laxmanacharysangoju
33

Answer:

option 1 is right....

hope it helps you

Attachments:
Answered by swethassynergy
2

The value of \frac{dy}{dx} is sinx^{2} +2x^{2} cosx^{2}   and option(1) is correct.

Step-by-step explanation:

Given:

Function y=x \ sinx^{2}.

To Find:

The value of \frac{dy}{dx}.

Formula Used:

Function y = uv,      where u and v are the functions of x.

\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}  --------------- formula no.01.

The above is  product rule of differentiation.

Solution:

As given- function y=x \ sinx^{2}.

Considering u=x  and v=sinx^{2}

Applying formula no.01.

\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}

\frac{dy}{dx} = x\frac{d(sinx^{2} )}{dx} + sinx^{2} \frac{d(x)}{dx}

    = x\times cosx^2 \times\frac{d(x^{2} )}{dx} +sinx^{2} \times1

    = x\times cosx^2 \times2x+sinx^{2}

    = 2x^{2} cosx^2 +sinx^{2}

Thus,the value of \frac{dy}{dx} is sinx^{2} +2x^{2} cosx^{2}   and option(1) is correct.

PROJECT CODE #SPJ3

Similar questions