Math, asked by ankushamre472, 1 year ago

If y=xxx....[infinity], then prove that dydx=y2x(1−ylogx)

Answers

Answered by Sharad001
82

Question :-

 \sf{if \: \:  \:  y \:  =  {x}^{ {x}^{ {x}^{...... \infty} } } } \\

 \bf{then \: prove \: that} \:  \\  \sf{ \frac{dy}{dx} \:  = \frac{ {y}^{2}}{  x \big(1 - y log(x) \big)}}

Formula used :-

 \rightarrow \:  \boxed{\sf{  \frac{d}{dx} u \: v \:  = u \:  \frac{d}{dx} v \:  + v \:  \frac{d}{dx} u}} \\  \\  \rightarrow \:  \boxed{ \sf{log \:  {m}^{n}  = n \: log \: m}}

Explanation :-

According to the question,

 \rightarrow \:  \sf{y \:  =  {x}^{ {x}^{ {x}^{...... \infty} } } } \\  \\  \: \bf{ we \: can \: write \: it \: } \\  \\  \rightarrow \:  \sf{y \:  =  {x}^{y} } \\  \\  \sf{taking \: log \: on \: both \: sides \: } \\  \\  \sf{ \rightarrow \: log \: y \:  = log \:  {x}^{y} } \\  \\ \because \: \boxed{  \sf{log \:  {m}^{n}   = n \: log \: m}}\\  \\   \rightarrow \:  \sf{log \: y \:  = y \: log \: x}

Now differentiate with respect to "x",

 \rightarrow \:  \frac{1}{y}  \sf{ \frac{dy}{dx}  = y \frac{d}{dx} log \: x + log \: x \:  \frac{d}{dx} y} \\   \\  \rightarrow \: \sf{  \frac{1}{y}  \frac{dy}{dx}  =  \frac{y}{x}  + log \: x \:  \frac{dy}{dx} } \\  \\  \rightarrow \:  \sf{ \frac{1}{y}  \frac{dy}{dx} \:  - log \: x \:  \frac{dy}{dx} \:  =  \frac{y}{x}  } \\  \\  \rightarrow \: \sf{  \frac{dy}{dx}  \bigg( \frac{1}{y}  - log \: x \bigg) =  \frac{y}{x} } \\  \\  \rightarrow \:   \sf{\frac{dy}{dx}  \bigg( \frac{1 - y \: log \: x}{y}  \bigg) =  \frac{y}{x} } \\  \\  \rightarrow \: \boxed{  \sf{ \frac{dy}{dx}  \:  =  \frac{ {y}^{2} }{x(1 -  \: y \: log \: x)} }}

Hence proved .

_____________________________

Similar questions