If (y + z)(z + x)(x + y) = , (x + 1)(y + 1)(z + 1) = 9 and xyz = 1, then the value of x + y + 2z is equal to?
Answers
||✪✪ GIVEN ✪✪||
- (y + z)(z + x)(x + y) = (45/4)
- (x + 1)(y + 1)(z + 1) = 9
- xyz = 1
✯✯ To Find ✯✯
- ( x + y + 2z) = ?
|| ✰✰ ANSWER ✰✰ ||
Let ,
→ (y + z)(z + x)(x + y) = (45/4) ------------- Equation ❶
→ (x + 1)(y + 1)(z + 1) = 9 --------------- Equation ❷
→ xyz = 1 --------------- Equation ❸
Also,
Let, (x + y + z) = k (Any Constant Term).
So,
→ (x + y) = (k - z)
→ (y + z) = (k - x)
→ (z + x) = (k - y)
Putting These Value in Equation ❶ Now, we get,
➼ (k - z)(k - x)(k - y) = (45/4)
➼ k³ - k²(x + y + z) + k(xy + yz + zx) - xyz = (45/4)
Putting value of xyz from Equation ❸ & (x+y+z) as k now,
➼ k³ - k³ + k(xy + yz + zx) - 1 = (45/4)
➼ k³ - k³ + k(xy + yz + zx) = (45/4) + 1
➼ k³ - k³ + k(xy + yz + zx) = (49/4) .
➼ k(xy + yz + zx) = (49/4) ------- Equation ⓸
__________________________
Now, Expanding Equation ❶ :-
➺ (x + 1)(y + 1)(z + 1) = 9
➺ (x + y + z) + (xy + yz + zx) + xyz + 1 = 9
Putting value of xyz from Equation ❸ & (x+y+z) as k again,
➺ k + (xy + yz + zx) + 2 = 9
➺ (xy + yz + zx) = 9 - 2 - k = (7 - k)
➺ (xy + yz + zx) = ( 7 - k)
Multiply both sides by k
➺ k(xy + yz + zx) = k( 7 - k)
Putting value of Equation ⓸ Here, now,
➺ (49/4) = 7k - k²
➺ 49 = 28k - 4k²
➺ 4k² - 28k + 49 = 0
➺ (2k)² - 2*2k*7 + (7)² = 0 {a² - 2ab + b² = (a - b)²}.
➺ (2k - 7)² = 0
➺ 2k - 7 = 0
➺ 2k = 7
➺ k = (7/2). ----------- Equation ❺
___________________
So,
➻ (x + y + z) = k = (7/2)
➻ (x + y) = (7/2 - z) --------------- Equation ➏
Now,
Putting value of k From Equation ❺ in Equation ❹ , we get,
➔ (7/2)(xy + yz + zx) = (49/4)
➔ (xy + yz + zx) = (49/4) * (2/7) = (7/2)
➔ z(x + y) + xy = (7/2)
Putting value of Equation ➏ & from ❸ { xy = 1/z } , we get,
➠ z (7/2 - z) + 1/z = (7/2)
➠ (7z/2 - z²/1) + (1/z) = (7/2)
Taking LCM,
➠ (7z² - 2z³ + 2) /2z = (7/2)
➠ (7z² - 2z³ + 2) = 7z
➠ 2z³ - 7z² + 7z - 2 = 0
Solving This we get,
☛ Z = 1.
___________________
Putting This value in Equation ➏ now, we get,
☛ (x + y) = (7/2 - 1)
☛ (x + y) = (5/2)
So ,
☛ (x + y + 2z)
☛(5/2) + 2*1
☛(5/2) + 2
☛ (9/2) (Ans).
Hence, The value of (x + y + 2z) will be (9/2).
______________________________
In Attached File......