If y¹/m + y–¹/m = 2 x prove that ( x²-1) yñ+2 + ( 2n+1) xyn+1 + (n²-m²) yñ = 0
Answers
Answered by
0
Answer:
We have y
1/m
+y
−1/m
=2x
⇒y
1/m
+
y
1/m
1
=2x
(y
1/m
)
2
−2xy
1/m
+1=0
Therefore, y
1/m
=x±
x
2
−1
y=[x±
x
2
−1
]
m
Thus y
1
=
x
2
−1
±m[x±
x
2
−1
]
m
=
x
2
−1
±my
⇒(x
2
−1)y
1
2
=m
2
y
2
⇒(x
2
−1)y
2
+xy
1
=m
2
y
Similar questions