Math, asked by mowmajikhan, 1 month ago

if you add two three digit number what is the smallest three number you will get?

Answers

Answered by writetopush
0

♣ Given:−

\begin{gathered} \sf{2A + 2B = \left[\begin{array}{cc}2& - 1& 4 \\3 & 2 & 5\end{array}\right] } \\ \\ \sf{A + 2B = \left[\begin{array}{cc}5 & 0 & 3 \\1 & 6 & 2 \end{array}\right]}\end{gathered}

2A+2B=[

2

3

−1

2

4

5

]

A+2B=[

5

1

0

6

3

2

]

-----------------------

\large \bf \clubs \: To \: Find :-♣ ToFind:−

Value of 2B .

-----------------------

\large \bf \clubs \: Solution:-♣ Solution:−

We Have,

\begin{gathered} \pmb{2A + 2B = \left[\begin{array}{cc}2& - 1& 4 \\3 & 2 & 5\end{array}\right] } \: \: - - - - (1)\\ \\ \: \: \: \: \:\pmb{A + 2B = \left[\begin{array}{cc}5 & 0 & 3 \\1 & 6 & 2 \end{array}\right]} \: \: - - - - (2)\end{gathered}

2A+2B=[

2

3

−1

2

4

5

]

2A+2B=[

2

3

−1

2

4

5

] − − − −(1)

A+2B=[

5

1

0

6

3

2

]

A+2B=[

5

1

0

6

3

2

] − − − −(2)

Multiplying Eq. (2) by 2 We Get :

\begin{gathered} \pmb{2A + 4B = \left[\begin{array}{cc}10 & 0 & 6 \\2 & 12 & 4\end{array}\right]} \: \: - - - - (3)\end{gathered}

2A+4B=[

10

2

0

12

6

4

]

2A+4B=[

10

2

0

12

6

4

] − − − −(3)

Subtracting (1) From (3) We Get :

\begin{gathered} \sf \cancel{2A} + 4B - \cancel{2A} -2B \\ = \left[\begin{array}{cc}10 & 0 & 6 \\ 2 & 12 & 4\end{array}\right] - \left[\begin{array}{cc}2 & - 1 & 4 \\3 & 2 & 5\end{array}\right] \\ \\ :\longmapsto\sf2B = \left[\begin{array}{cc} 10- 2& 0+ 1& 6- 4 \\ 2- 3 & 12- 2 & 4 - 5\end{array}\right] \\ \\ \end{gathered}

2A

+4B−

2A

−2B

=[

10

2

0

12

6

4

]−[

2

3

−1

2

4

5

]

:⟼2B=[

10−2

2−3

0+1

12−2

6− 4

4−5

]

\begin{gathered}\purple{ \large :\longmapsto \pmb{ \underline {\boxed{{2B = \left[\begin{array}{cc} 8& 1& 2 \\ - 1 & 10 & - 1\end{array}\right]} }}}}\end{gathered}

:⟼

2B=[

8

−1

1

10

2

−1

]

2B=[

8

−1

1

10

2

−1

]

\underline{\underline{\Large\pink{\mathfrak{ \text{H}ence \:\:option\:\: B\:\: Correct} }}}

HenceoptionBCorrect

\begin{gathered} \Large\red{\mathfrak{ \text{W}hich \:\:is\:\: the\:\: required} }\\ \LARGE \red{\mathfrak{ \text{ A}nswer.}}\end{gathered}

Whichistherequired

Answer.

-----------------------

Answered by shravyanb
3

Answer:

\huge\fbox\colorbox{pink}{✿Yøur-An˜swer♡}

\huge\color{red}{⇝} 999

Step-by-step explanation:

example: 444+555=999

\huge\color{pink}{✿} HOPE IT HELPS \huge\color{pink}{✿}

FOLLOW ME

PLEASE MARK AS BRAINLIEST

Similar questions