Math, asked by sakshamv294, 5 months ago

if you solve it correctly then I will give u braniest and if spam then I will report your answer​

Attachments:

Answers

Answered by EthicalElite
10

Question :

 \sf Solve :

  •  \sf \dfrac{3t-2}{4} - \dfrac{2t + 3}{3} = \dfrac{2}{3} - t

Solution :

 \sf : \implies \dfrac{3t-2}{4} - \dfrac{2t + 3}{3} = \dfrac{2}{3} - t

 \sf : \implies \dfrac{3(3t-2)}{4 \times 3} - \dfrac{4(2t + 3)}{3\times 4} = \dfrac{2}{3} - \dfrac{3t}{3}

 \sf : \implies \dfrac{9t-6}{12} - \dfrac{8t + 12}{12} = \dfrac{2- 3t}{3}

 \sf : \implies \dfrac{(9t-6) - (8t + 12)}{12} = \dfrac{2- 3t}{3}

 \sf : \implies \dfrac{9t-6 - 8t - 12}{\cancel{12}} \times \cancel{3} = 2- 3t

 \sf : \implies \dfrac{t - 18}{4} = 2- 3t

 \sf : \implies t - 18 = (2- 3t)4

 \sf : \implies t - 18 = 8 - 12t

 \sf : \implies t + 12t = 8 + 18

 \sf : \implies 13t = 26

 \sf : \implies t = \cancel{\dfrac{26}{13}}

 \sf : \implies t = 2

 \Large \underline{\boxed{\sf t = 2}}

Hence, value of t is 2.

Similar questions