If z=1 +√3i then show
that z²+4=2z
Answers
Answered by
3
ANSWER:
Given:
- z = 1 + √3 i
To prove:
- z² + 4 = 2z
Proof:
We are given that,
⇒ z = 1 + √3i
We need to prove that,
⇒ z² + 4 = 2z.
Now, substituting value of z,
⇒ (1 + √3i)² + 4 = 2(1 + √3i)
We know that,
⇒ (a + b)² = a² + b ² + 2ab
So,
⇒ (1 + √3i)² + 4 = 2(1 + √3i)
⇒ (1)² + (√3i)² + 2(1)(√3i) + 4 = 2 + 2√3i
⇒ 1 + 3i² + 2√3i + 4 = 2 + 2√3i
⇒ 5 + 3i² + 2√3i = 2 + 2√3i
We know that,
⇒ i² = -1
So,
⇒ 5 + 3(-1) + 2√3i = 2 + 2√3i
⇒ 5 - 3 + 2√3i = 2 + 2√3i
⇒ 2 + 2√3i = 2 + 2√3i
As, LHS = RHS,
HENCE VERIFIED!!!
Similar questions