Math, asked by Saifreza, 10 months ago

If (z-1/z)=6 find the value of :
(z+1/z)​

Answers

Answered by Anonymous
23

Answer:

{\sf{ {\sqrt{40}}}}

Step-by-step explanation:

Given : {\sf{\ \ z - {\dfrac{1}{z}} = 6}}

To Find : {\sf{\ \ z + {\dfrac{1}{z}} }}

Solution :

Squaring both sides of {\sf{z - {\dfrac{1}{z}} . }}

\implies{\sf{ \left( z - {\dfrac{1}{z}} \right) ^2 = (6)^2 }}

{\boxed{\tt{\bigstar \ \ Identity \ : \ (a - b)^2 = a^2 + b^2 - 2ab }}}

{\tt{Here, \ a = z, \ b = {\dfrac{1}{z}}}}

\implies{\sf{ (z)^2 + \left( {\dfrac{1}{z}} \right) ^2 - 2 . z . {\dfrac{1}{z}} = 36}}

\implies{\sf{ z^2 + {\dfrac{1}{z^2}} - 2 = 36}}

\implies{\sf{ z^2 + {\dfrac{1}{z^2}} = 36 + 2}}

\implies{\sf{ z^2 + {\dfrac{1}{z^2}} = 38 \qquad \ \ ...(1) }}

Now,

Squaring of {\sf{z + {\dfrac{1}{z}} . }}

\implies{\sf{ \left( z + {\dfrac{1}{z}} \right)^2 }}

{\boxed{\tt{\bigstar \ \ Identity \ : \ (a + b)^2 = a^2 + b^2 + 2ab}}}

{\tt{Here, \ a = z, \ b = {\dfrac{1}{z}}}}

\implies{\sf{ (z)^2 + \left( {\dfrac{1}{z}} \right)^2 + 2 . z . {\dfrac{1}{z}} }}

\implies{\sf{z^2 + {\dfrac{1}{z^2}} + 2 }}

\implies{\sf{38 + 2 \qquad \ \ ...from (1) }}

\implies{\boxed{\boxed{\sf{40}}}}

Now,

We get : {\sf{ \left( z + {\dfrac{1}{z}} \right) ^2 = 40}}

\implies{\sf{ z + {\dfrac{1}{z}} = {\sqrt{40}}}}

Answered by Anonymous
36

❏ Question

If (z-1/z)=6 find the value of (z+1/z) .

❏Solution

Given:-

  • ( z - 1/z ) = 6 .......(1)

Find:-

  • (z + 1/z ) = ?

Explanation:-

we Know,

★ ( a - b)² = (a² + b² -2ab )

So,

So,➠ ( z - 1/z )² = (z² + 1/z² - 2 )

( keep Value by (1) )

( z² + 1/z² ) = ( 6² + 2 )

( z² + 1/z² ) = 36+2

( z² + 1/z² ) = 38 ...........(2)

______________________

Again,

★ ( a + b )² = ( a² + b² + 2ab )

so,

( z + 1/z )² = ( z² + 1/z² + 2 )

( keep value by (2) )

( z + 1/z )² = ( 38 + 2 )

( z + 1/z)² = (40)

( z +1/z) = 40 [ Ans.]

_____________________

Similar questions