if z-(1/z) = 6 find z^6+(1/z^6)
Answers
Answered by
3
(z-1/z)^2=6^2
z^2+1/Z^2-2=36
z^2+1/z^2=38
(z^2+2/z^2)^3=38^3
z^6+1/z^6+3×z^2×1/z^2(z^2+1/z2)=54872
z^6+1/z^6=54758
z^2+1/Z^2-2=36
z^2+1/z^2=38
(z^2+2/z^2)^3=38^3
z^6+1/z^6+3×z^2×1/z^2(z^2+1/z2)=54872
z^6+1/z^6=54758
saurav7474:
mark as brainlist answer
Answered by
1
(z-1/z)^2=6^2
(a+b)^2=a^2+b^2 -2ab
z^2+1/Z^2-2=36
z^2+1/z^2=36+2=38
(z^2+2/z^2)^3=38^3
(a+b)^3=a^3 +3a^2 b+ +3a b^2 +b^3
z^6+1/z^6+3×z^2×1/z^2(z^2+1/z 2)=54872
z^6+1/z^6=54872-114=54758
pls mark my answer brainliest
(a+b)^2=a^2+b^2 -2ab
z^2+1/Z^2-2=36
z^2+1/z^2=36+2=38
(z^2+2/z^2)^3=38^3
(a+b)^3=a^3 +3a^2 b+ +3a b^2 +b^3
z^6+1/z^6+3×z^2×1/z^2(z^2+1/z 2)=54872
z^6+1/z^6=54872-114=54758
pls mark my answer brainliest
Similar questions