Math, asked by ronikk67214, 16 days ago

IF z ^ 2 + 1/(z ^ 2) = 6 find the value of z ^ 3 - 1/(z ^ 3) using only the positive value of z - 1/z​

Answers

Answered by user0888
4

Let that,

\rm{z-\dfrac{1}{z}=x}

We know the formula of,

\cdots\longrightarrow\boxed{\rm{A^{2}-2AB+B^{2}=(A-B)^{2}}}

Here,

  • \rm{A=z}
  • \rm{B=\dfrac{1}{z}}

\rm{z^{2}-2\cdot z\cdot \dfrac{1}{z}+\dfrac{1}{z^{2}}=x^{2}}}

\rm{z^{2}-2+\dfrac{1}{z^{2}}=x^{2}}

\rm{x^{2}=6-2}

\rm{x^{2}-4=0}

\therefore \rm{x=2}}

Hence,

z-\dfrac{1}{z}=2

We know the formula of,

\cdots\longrightarrow\boxed{\rm{A^{3}-B^{3}=(A-B)^{3}+3AB(A-B)}}

Here,

  • \rm{A=z}
  • \rm{B=\dfrac{1}{z}}

\rm{\left(z-\dfrac{1}{z}\right)^{3}+3\cdot z\cdot \dfrac{1}{z}\cdot \left(z-\dfrac{1}{z} \right)=2^{3}+3\cdot2}

\rm{z^{3}-\dfrac{1}{z^{3}}=8+6}

\therefore \rm{z^{3}-\dfrac{1}{z^{3}}=14}

Hence shown that

\cdots\longrightarrow\boxed{\rm{\rm{z^{3}-\dfrac{1}{z^{3}}=14}}}

Similar questions