Math, asked by Anonymous, 1 day ago

If z = (√3/2 + i/2)⁵ + (√3/2 - i/2)⁵, then?
[A] Im(z) < 0
[B] Re(z) > 0
[C] Im(z) = 0
[D] Im(z) > 0

Answers

Answered by mathdude500
29

\large\underline{\sf{Solution-}}

Given that,

\rm \: z =  {\bigg(\dfrac{ \sqrt{3} }{2}  + \dfrac{i}{2}  \bigg) }^{5} + {\bigg(\dfrac{ \sqrt{3} }{2}  -  \dfrac{i}{2}  \bigg) }^{5}  \\

can be rewritten as

\rm \: z =  {\bigg(\dfrac{ \sqrt{3}  + i}{2}  \bigg) }^{5} + {\bigg(\dfrac{ \sqrt{3}  - i}{2}\bigg) }^{5}  -  -  -  - (1) \\

We know,

\rm \: \omega  = \dfrac{ - 1 + i \sqrt{3} }{2}

So,

\rm \: i\omega  = \dfrac{ - i +  {i}^{2}  \sqrt{3} }{2}

\rm \: i\omega  = \dfrac{ - i  -  \sqrt{3} }{2}

\rm\implies \:\dfrac{i +  \sqrt{3} }{2}  \:  =  - \: i\omega -  -  - (2)  \\

Also, we know that

\rm \: \omega^{2}  = \dfrac{ - 1  -  i \sqrt{3} }{2}

\rm \: i\omega^{2}  = \dfrac{ - i -   {i}^{2}  \sqrt{3} }{2}  \\

\rm \: i\omega^{2}  = \dfrac{ - i  +   \sqrt{3} }{2}  \\

\rm\implies \:\dfrac{\sqrt{3} - i }{2}  \:  =  \: i\omega^{2} -  -  - (3)   \\

So, on substituting equation (2) and (3) in (1), we get

\rm \: z =  {\bigg(\dfrac{ \sqrt{3} }{2}  + \dfrac{i}{2}  \bigg) }^{5} + {\bigg(\dfrac{ \sqrt{3} }{2}  -  \dfrac{i}{2}  \bigg) }^{5}  \\

\rm \:  =  \:  {( - i\omega )}^{5} +  {(i {\omega }^{2}) }^{5}

\rm \:  =  \:  -  {i}^{5} {\omega }^{5} + \:{i}^{5} {\omega }^{10}

\rm \:   =  \: -  \:  {i}^{5}( {\omega }^{5} -  {\omega }^{10}) \\

\rm \:  =  \:  {i}^{4} \: i \: ( {\omega }^{3} \:  {\omega }^{2} -  {( {\omega }^{3}) }^{3} \: \omega )

We know,

\boxed{\tt{  \:  \:  {i}^{4} = 1 \: }} \\

\boxed{\tt{  \:  \:  {\omega }^{3} \:  =  \: 1 \:  \: }} \\

So, using this we get

\rm \:  =  \:  -  \: i \: ( {\omega }^{2} - \omega ) \\

On substituting the values, we get

\rm \:  = - \:\sqrt{3} \\

\rm \:  =  \: -\sqrt{3} + 0i \\

\rm\implies \:Re(z) &lt; 0 \: Im(z) = 0 \\

So, Option [C] is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Cube Roots of unity

\rm \: x =  {\bigg(1 \bigg) }^{\dfrac{1}{3} }  \\

On cubing both sides, we get

\rm \:  {x}^{3} = 1 \\

\rm \:  {x}^{3} - 1 = 0 \\

\rm \: (x - 1)( {x}^{2} + x + 1) = 0 \\

\rm\implies \:x = 1

or

\rm \:  {x}^{2} + x + 1 = 0 \\

\rm \: x = \dfrac{ - 1 \:  \pm \:  \sqrt{ {1}^{2}  - 4 \times 1 \times 1} }{2 \times 1}  \\

\rm \: x = \dfrac{ - 1 \:  \pm \:  \sqrt{ 1 - 4} }{2 }  \\

\rm \: x = \dfrac{ - 1 \:  \pm \:  \sqrt{ - 3} }{2 }  \\

\rm \: x = \dfrac{ - 1 \:  \pm \:  i\sqrt{3} }{2 }  \\

\rm \: x = \dfrac{ - 1 \:  +  \:  i\sqrt{3} }{2 } \:  \: or \:  \: \dfrac{ - 1 \:   -   \:  i\sqrt{3} }{2 }  \\

\rm\implies \:x = \omega  \:  \: or \:  \:  {\omega }^{2}  \\

where,

\rm \: \omega  = \dfrac{ - 1 \:  +  \:  i\sqrt{3} }{2 } \\

and

\rm \:  {\omega }^{2}  = \dfrac{ - 1 \:  -   \:  i\sqrt{3} }{2 } \\

Attachments:
Similar questions