If z = √(3)/2 + i/2(i + √-1), then
(1 + iz + z⁵ + iz⁸)⁹ is equal to:
(A) –1 (B) 1
(C) (–1 + 2i)⁹
(D) 0
Answers
Answered by
0
Answer:
option c................
Answered by
0
If z = √(3)/2 + i/2, (i = √-1), then (1 + iz + z⁵ + iz⁸)⁹ is equal to -1
- z = cos( 30) + i sin (30)
- We know that cos(x) + i sin(x) = , by Euler's Formula.
Therefore,
- z = cos( 30) + i sin (30) = + i sin() =
Therefore,
- (1 + iz + z⁵ + iz⁸)⁹ = (1 + i + + i)^9.
Also,
- i =
- Let y = (1 + i + + i) = ( 1 + .
- ( 1 + . + +
Again applying Euler's formula,
- ( 1 + + + ) =
(1 + (cos() + i sin(
- y = (1 + (−1/2+i/2 + (−
- y = cos() + isin(
Therefore , = = cos(3) + isin(3
Therefore, (1 + iz + z⁵ + iz⁸)⁹ is equal to -1
Similar questions