Math, asked by monu3852, 11 months ago

If z = √(3)/2 + i/2(i + √-1), then
(1 + iz + z⁵ + iz⁸)⁹ is equal to:
(A) –1 (B) 1
(C) (–1 + 2i)⁹
(D) 0

Answers

Answered by Anonymous
0

Answer:

option c................

Answered by KajalBarad
0

If z = √(3)/2 + i/2, (i = √-1), then  (1 + iz + z⁵ + iz⁸)⁹ is equal to -1

  • z = cos( 30) + i sin (30)
  • We know that  cos(x) + i sin(x) = e^{ix} , by Euler's Formula.

Therefore,

  • z = cos( 30) + i sin (30) =cos(\frac{\pi }{6} ) + i sin(\frac{\pi }{6})  = e^{i\frac{\pi }{6}  }

Therefore,

  • (1 + iz + z⁵ + iz⁸)⁹ = (1 + ie^{i\frac{\pi }{6}  }  +e^{i\frac{5\pi }{6} } + ie^{\frac{i8\pi }{6} })^9.

Also,

  • i = e^{\frac{i\pi }{2} }

  • Let y = (1 + ie^{i\frac{\pi }{6}  }  +e^{i\frac{5\pi }{6} } + ie^{\frac{i8\pi }{6} }) = ( 1 +  e^{\frac{i\pi }{2} }.

  • ( 1 +  e^{\frac{i\pi }{2} }.e^{i\frac{\pi }{6}  } + e^{i\frac{5\pi }{6} } +  

Again applying Euler's formula,

  • ( 1 + e^{\frac{i2\pi }{3} } + e^{i\frac{5\pi }{6} } + e^{\frac{i11\pi }{6} })  =

            (1 + (cos(\frac{2\pi }{3}) + i sin(

  • y = (1 + (−1/2+i\sqrt{3}/2 + (−
  • y = cos(\frac{\pi }{3}) + isin(

Therefore , Y^{9} = e^{\frac{i9\pi }{3} }  = e^{i3\pi } = cos(3\pi) + isin(3

Therefore, (1 + iz + z⁵ + iz⁸)⁹ is equal to -1

Similar questions