Math, asked by Charit7165, 9 months ago

The number of ways of choosing 10 objects out of 31 objects of which 10 are identical and the remaining 21 are distinct, is :
(A) 2²⁰ (B) 2²⁰ + 1
(C) 2²¹ (D) 2²⁰ – 1

Answers

Answered by knjroopa
1

Step-by-step explanation:

Given The number of ways of choosing 10 objects out of 31 objects of which 10 are identical and the remaining 21 are distinct, is

  • Now we have 31 objects.
  • Out of which 10 are identical and the remaining 21 are different (distinct)
  • Now we need to select 10
  • So possible ways will be 0 identical + 10 distinct = 1 x 21 C10
  •                                         1 identical + 9 distinct = 1 x 21 C9
  •                                         2 identical + 8 distinct = 1 x 21 C8
  •                                          3                + 7
  •                                           4                + 6
  •                                          ……………………….
  •                                          10 identical + 0 distinct = 1 x 21C0
  • Therefore total number of ways will be
  •                              21 C10 + 21 C9 + 21 C8+…………= x --------(1 )
  • So we know that nCr = n C n – r
  •                        21 C11 + 21 C12 + 21 C13 +…………+ 21 C21 = x ------(2)
  • Adding (1) and (2) we get
  •                     2x = 21 C0 + 21 C1 + 21 C2 +-------------+ 21 C21
  •                (So we have nC0 + nC1 +----------+nCn = 2^n)
  •              So 2x = 2^21
  •                    x = 2^21 / 2
  •                   x = 2^21 – 1
  •               Or x = 2^20
  • So required number of ways will be
  •                    21 C10 + 21 C9 +--------------+ 21 C0 = 2^20

Reference link will be

https://brainly.in/question/22631202

https://brainly.in/question/3295363

Similar questions