Math, asked by parthshah2355, 4 months ago

if z= (3-4i)² then find inverse of
Complex number​

Answers

Answered by mathdude500
4

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \:  ⟼ \: z \:  =  \:  {( \: 3 \:  - 4 \: i \: )}^{2}

\tt \:  ⟼ \: z \:  =  {3}^{2}  +  {(4 \: i)}^{2}  \:  -  \: 24i

\tt \:  ⟼ \: z \:  = 9 \:   +  \:  {16i}^{2}  - 24i

\tt \:  ⟼ \: z \:  =  \: 9 \:  -  \: 16 \:  -  \: 24i

\tt \:  ⟼ \: z \:  =  \:  -  \: 7 \:  -  \: 24 \: i

\tt \: So,  \: multiplicative \: inverse \: of \: z \:  =  \: \dfrac{1}{z}

 \tt \:  ⟼ \: \dfrac{1}{z}  \:  =  \: \dfrac{1}{ -  \: 7 \:  -  \: 24 \: i}

\tt \:  ⟼ \: \dfrac{1}{z}  \:  =  \: \dfrac{1}{ -  \: 7 \:  -  \: 24 \: i} \:  \times  \: \dfrac{-  \: 7 \:   +   \: 24 \: i}{-  \: 7 \:   +   \: 24 \: i}

\tt \:  ⟼ \: \dfrac{1}{z}  \:  = \: \dfrac{-  \: 7 \:   +   \: 24 \: i}{ {( 7)}^{2}   -   {(24i)}^{2} }

\tt \:  ⟼ \: \dfrac{1}{z}  \:  = \: \dfrac{-  \: 7 \:   +   \: 24 \: i}{49 - 576 {i}^{2} }

\tt \:  ⟼ \: \dfrac{1}{z}  \:  = \: \dfrac{-  \: 7 \:   +   \: 24 \: i}{625}

\tt \:  ⟼ \: \dfrac{1}{z}  \:  = \:  -  \: \dfrac{7}{625}  + i \: \dfrac{24}{625}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions