Math, asked by singhsandhya7715, 1 month ago

if z=a+iband z³=x+iy then find

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:z = a + ib

and

\rm :\longmapsto\: {z}^{3}  = x + iy

On substituting the value of z, we get

\rm :\longmapsto\: {(a + ib)}^{3}  = x + iy

\rm :\longmapsto\: {a}^{3} +  {i}^{3} {b}^{3} + 3a(ib)(a + ib) = x + iy

We know,

\boxed{ \tt{ \:  {i}^{3}  \: =  - i \: }}

So, using this identity, we get

\rm :\longmapsto\: {a}^{3}  - i{b}^{3} +  + 3ib{a}^{2} + 3a {i}^{2} {b}^{2}    = x + iy

We know,

\boxed{ \tt{ \:  {i}^{2}  \: =  - 1 \: }}

Using this, we get

\rm :\longmapsto\: {a}^{3}  - i{b}^{3} +  + 3ib{a}^{2} - 3a{b}^{2}    = x + iy

can be re-arranged as

\rm :\longmapsto\:( {a}^{3} -  {3ab}^{2})    + i( - {b}^{3} + 3b{a}^{2}) = x + iy

So, on comparing, we get

\red{\rm :\longmapsto\:x =  {a}^{3} -  {3ab}^{2}}

and

\red{\rm :\longmapsto\:y =  {3ba}^{2} -   {b}^{3} }

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ {a}^{2}  -  {b}^{2} }\bigg[\dfrac{x}{a}  + \dfrac{y}{b} \bigg]

\rm \:  =  \: \dfrac{1}{ {a}^{2}  -  {b}^{2} }\bigg[\dfrac{ {a}^{3}  - 3 {ab}^{2} }{a}  + \dfrac{ {3ba}^{2}  -  {b}^{3} }{b} \bigg]

\rm \:  =  \: \dfrac{1}{ {a}^{2}  -  {b}^{2} }\bigg[\dfrac{a({a}^{2}  - 3 {b}^{2})}{a}  + \dfrac{b({3a}^{2}  -  {b}^{2})}{b} \bigg]

\rm \:  =  \: \dfrac{1}{ {a}^{2}  -  {b}^{2} }\bigg[ {a}^{2} -  {3b}^{2} +  {3a}^{2} -  {b}^{2}    \bigg]

\rm \:  =  \: \dfrac{1}{ {a}^{2}  -  {b}^{2} }\bigg[ 4{a}^{2} -  {4b}^{2} \bigg]

\rm \:  =  \: \dfrac{4}{ {a}^{2}  -  {b}^{2} }\bigg[ {a}^{2} -  {b}^{2} \bigg]

\rm \:  =  \: 4

Hence,

\rm \implies\:\boxed{ \tt{ \: \dfrac{1}{ {a}^{2}  -  {b}^{2} }\bigg[\dfrac{x}{a}  + \dfrac{y}{b} \bigg] = 4 \: }}

Answered by senboni123456
1

Answer:

Step-by-step explanation:

We have,

\tt{z=a+ib\,\,\,\,\,\,and\,\,\,\,\,\,\,z^3=x+iy}

\sf{\implies\,z^3=(a+ib)^3}

\sf{\implies\,x+iy=(a)^3+(ib)^3+3(a)^2(ib)+3(a)(ib)^2}

\sf{\implies\,x+iy=a^3-ib^3+3a^2b\,i-3ab^2}

\sf{\implies\,x+iy=a^3-3ab^2+(3a^2b-b^3)i}

On comparing

\sf{\implies\,x=a^3-3ab^2\,\,\,\,\,\,\,\&\,\,\,\,\,\,\,y=3a^2b-b^3}

\sf{\implies\,x=a(a^2-3b^2)\,\,\,\,\,\,\,\&\,\,\,\,\,\,\,y=b(3a^2-b^2)}

\sf{\implies\,\dfrac{x}{a}=a^2-3b^2\,\,\,\,\,\,\,\&\,\,\,\,\,\,\,\dfrac{y}{b}=3a^2-b^2}

Now,

\sf{\dfrac{x}{a}+\dfrac{y}{b}=a^2-3b^2+3a^2-b^2}

\sf{\implies\dfrac{x}{a}+\dfrac{y}{b}=4a^2-4b^2}

\sf{\implies\dfrac{1}{a^2-b^2}\cdot\left(\dfrac{x}{a}+\dfrac{y}{b}\right)=4}

Similar questions