Math, asked by sasidharreddy123, 9 months ago

if Z is a complex number such that,|z-1|=1 then arg(1/z-1/2)may be




​​

Answers

Answered by madeducators3
2

Given:

|Z-1|=1

To Find:

arg(\frac{1}{Z} -\frac{1}{2} )

Solution:

Let Z is a complex number

Z= x +iy

Modulus of complex number:

|Z|= \sqrt{x^{2} + y^{2} }

Argument of a complex number:

arg(z) = Tan^{-1}\frac{y}{x}

given |z-1|=1

z= x + iy

|(x-1) + y| = \sqrt{(x-1)^{2} +y^{2}  } \\\\x^{2} +  y^{2} -2x +1 =1\\ x^{2} +  y^{2} = 2x\\

arg(\frac{1}{Z} -\frac{1}{2} )

\frac{1}{z}- \frac{1}{2} \\\frac{1}{x+iy}- \frac{1}{2} \\\\\frac{x-iy}{x^{2}+ y^{2}  }- \frac{1}{2} \\\\x^{2} + y^{2} =2x \\\frac{x-iy}{2x  }- \frac{1}{2} \\\\\\\\\\frac{x}{2x} - \frac{y}{2x} -\frac{1}{2}\\  -\frac{iy}{2x}

since the function do not contain any real part . hence real part = 0

argument = Tan^{-1} \frac{\frac{y}{2x} }{0}

Argument = \frac{\pi }{2}

Similar questions