Math, asked by savitasharmarb, 10 months ago

If z1= 1+2i and z2 =6+5i,then find |z1|/|z2|

Answers

Answered by BrainlyConqueror0901
8

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\bigg|\frac{Z_{1}}{Z_{2}}\bigg|=\sqrt{\frac{3}{11}}\iota}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies  Z_{1} =1 + 2 \iota \\  \\ \tt: \implies  Z_{2} =6 + 5 \iota  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies    \bigg| \frac{ Z_{1}}{ Z_{2} }  \bigg|  =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  Z_{1} = 1 + 2 \iota \\  \\ \tt:  \implies   | Z_{1}|  =  \sqrt{ {1}^{2}  + (2 \iota) ^{2} }  \\  \\ \tt:  \implies   | Z_{1}|  =  \sqrt{1 -  4}  \\  \\ \tt:  \implies   | Z_{1}|  =  \sqrt{3}  \iota \\  \\  \bold{Similarly : } \\ \tt:  \implies  Z_{2} = 6 + 5 \iota \\  \\ \tt:  \implies   | Z_{2}|  =  \sqrt{ {6}^{2}  + (5\iota) ^{2} }  \\  \\ \tt:  \implies   | Z_{2}|  =  \sqrt{36 -  25}  \\  \\ \tt:  \implies   | Z_{2}|  =  \sqrt{11}  \\  \\  \bold{For \: finding \: value : } \\  \tt: \implies    \bigg| \frac{ Z_{1}}{Z_{2} }  \bigg|  =  \frac{ \sqrt{3} \iota }{ \sqrt{11} }  \\  \\  \green{\tt: \implies    \bigg| \frac{ Z_{1}}{Z_{2} }  \bigg|  =  \sqrt{ \frac{3}{11} }  \iota}

Answered by rohit301486
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\bigg|\frac{Z_{1}}{Z_{2}}\bigg|=\sqrt{\frac{3}{11}}\iota}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\underline \bold{Given :}}

 \tt: \implies Z_{1} =1 + 2 \iota

\tt: \implies Z_{2} =6 + 5 \iota

\red{\underline \bold{To \: Find :}}

\tt: \implies \bigg| \frac{ Z_{1}}{ Z_{2} } \bigg| =?

  • Given Question

\bold{As \: we \: know \: that}

 \tt: \implies Z_{1} = 1 + 2 \iota

 \tt: \implies | Z_{1}| = \sqrt{ {1}^{2} + (2 \iota) ^{2} }

 \tt: \implies | Z_{1}| = \sqrt{1 - 4}

\tt: \implies | Z_{1}| = \sqrt{3} \iota

 \bold{Similarly : }

\tt: \implies Z_{2} = 6 + 5 \iota

 \tt: \implies | Z_{2}| = \sqrt{ {6}^{2} + (5\iota) ^{2} }

\tt: \implies | Z_{2}| = \sqrt{36 - 25}

 \tt: \implies | Z_{2}| = \sqrt{11}

\bold{For \: finding \: value : }

 \tt: \implies \bigg| \frac{ Z_{1}}{Z_{2} } \bigg| = \frac{ \sqrt{3} \iota }{ \sqrt{11} }

\green{\tt: \implies \bigg| \frac{ Z_{1}}{Z_{2} } \bigg| = \sqrt{ \frac{3}{11} } \iota}

Similar questions