Math, asked by joeljthommana, 9 months ago

If z1=(6+3i)and z2=(2-i) then z1/z2

Answers

Answered by brokenHeartSadGirl
11

\huge\mathtt\color{orange} ANSWER :

➪ z1/z2

➪6 + 3i / 2 - i

➪3

<font color = green >

➪3 is the answer .

Answered by anamika0728
32

Answer:

\frac{1}{5}(9+12i)

Step-by-step explanation:

Here Z_1 = 6+3i and Z_2\\ = 2-i

We do the operation \frac{Z_1}{Z_2} as z_{1} . \frac{1}{z_{2\\} }

So, \frac{1}{z_{2\\} } = \frac{a}{a^{2}+b^{2}  } + i \frac{-b}{a^{2} + b^{2} }

         = \frac{2}{2^{2}+1^{2}  } +i \frac{-(-1)}{2^{2} +1^{2} }      [Since a = 2 and b = -1]

         =   \frac{2+i}{5}    

\frac{z_{1}}{z_{2} } = z_{1} . \frac{1}{z_{2} }

      = (6+3i)(\frac{2+i}{5} )

    =\frac{12}{5} + \frac{6i}{5} +\frac{6i}{5} + i^{2} \frac{3}{5}  \\= \frac{12}{5} + \frac{6i}{5} +\frac{6i}{5} - \frac{3}{5} \\ = \frac{12}{5} - \frac{3}{5}  + \frac{12i}{5}  = \frac{9}{5} + \frac{12i}{5} \\= \frac{1}{5} (9 + 12i)  

     

   

Similar questions