Math, asked by krishmandot, 1 month ago

if zeros of rational expression (ax + b) (3x + 2) are -2/3 and 1/2 then a + b is​

Answers

Answered by mathdude500
5

\large\underline{\bold{Given- }}

 \sf \: A  \: rational \: expresion \: (ax + b)(3x + 2) \: having \: zeroes \:  - \dfrac{2}{3}  \: and \: \dfrac{1}{2}

\large\underline{\bold{To\:Find - }}

 \sf \:  a + b

\large\underline{\bold{Solution-}}

Concept Used :-

If α and β are zeroes of ax² + bx + c then

\boxed{{\sf Sum\ of\ the\ zeroes= \alpha +   \beta  = \frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

OR

\boxed{{\tt Sum\ of\ the\ zeroes= \alpha  +  \beta  = \frac{-b}{a}}}

And

\boxed{{\sf Product\ of\ the\ zeroes= \alpha  \beta  = \frac{Constant}{coefficient\ of\ x^{2}}}}

OR

\boxed{{\tt Product\ of\ the\ zeroes= \alpha  \beta  = \frac{c}{a}}}

Let's solve the problem now!!

 \sf \:  Let  \: f(x)  \:  =  \: (ax + b)(3x + 2)

 \sf \:  = 3a {x}^{2}  + 2ax + 3bx + 2b

 \sf \:  = 3a {x}^{2}  + x(2a +  3b) + 2b

So,

 \sf \:f(x)  \: is \: a \: quadratic \: polynomial \: having \: zeros \: \dfrac{ - 2}{3}  \: and \: \dfrac{1}{2}

Hence,

  • using product of zeroes, we have

{{\sf Product\ of\ the\ zeroes= \alpha  \beta  = \dfrac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\: - \dfrac{2}{3}  \times \dfrac{1}{2}  = \dfrac{2b}{3a}

\rm :\longmapsto\:\dfrac{2b}{a}  =  - 1

\rm :\implies\: \boxed{ \bf{a \:  =  \:  -  \: 2b}} -  - (1)

Again,

  • Using sum of zeroes, we have

{{\sf Sum\ of\ the\ zeroes= \alpha +   \beta  = \dfrac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

 \sf \:   - \dfrac{2}{3}  + \dfrac{1}{2}  =  - \dfrac{(3b + 2a)}{3a}

 \sf \:  \dfrac{ - 4 + 3}{6}  =  - \dfrac{3b + 2( - 2b)}{3( - 2b)}  \:   \: \:  \{ \because \: a \:  =  \:  -  \: 2b \}

 \sf \:   - \dfrac{1}{6}  =  - \dfrac{3b - 4b}{ - 6b}

 \sf \:   - \dfrac{1}{6}  =  - \dfrac{1}{6}

Hence,

 \sf \:  a + b =  - 2b + b =  - b

 \bf \: Hence \: value \: of \: a \:  +  \: b \:  =  \:  -  \: b

Similar questions