Math, asked by hadelschool8888, 1 year ago

ifa+b+c=8and ab+bc+ac=20 find a^3+b^3+c^3-3abc

Answers

Answered by jaya1012
3
HELLO.......FRIEND!!

THE ANSWER IS HERE,

a+b+c= 8

Squaring on both sides.

 =  >  \:  ({a + b + c})^{2}  =  {8}^{2}

 =  >  \:  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca) = 64

 =  >  \:  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(20) = 64

 =  >  \:  {a}^{2}  +  { b}^{2}  +  {c}^{2}  = 64 - 40 = 24

We know the formula,

 {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = (a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ca)

 =  >  \: 8(24 - 20)
 =  >  \: 8 \times 4

 =  >  \: 32

so \:  {a}^{3}  +  {b}^{3}  +  {c}^{3} - 3abc = 32


:-)Hope it helps u.
Answered by tejasri2
2
Hi Friend !!

THE ANSWER IS HERE,

=======================
a+b+c= 8

Squaring on both sides.

(a+b+c)² = 8²

a²+b²+c²+2(ab+bc+ca) = 64

a²+b²+c²+2(20) = 64

a²+b²+c² = 64-40

a²+b²+c² = 24


We know the formula,

a³+b³+c³-3abc = (a+b+c)
(a²+b²+c²-ab-bc-ca)

= 8(24-20)

= 8(4)

= 32



Hope it helps u

jaya1012: Hello
tejasri2: hii
Similar questions