Math, asked by spoorthihm05, 11 months ago

ifcosa+2cosb+3cosc=0 sina+2sinb+3sinc=0 a+b+c=pi then sin3a+8sin3b+27sin3c=

Answers

Answered by MaheswariS
2

\textbf{Given:}

\mathsf{cosA+2\,cosB+3\,cosC=0}

\mathsf{sinA+2\,sinB+3\,sinC=0}

\mathsf{and\;A+B+C=\pi}

\textbf{To find:}

\textsf{The value of}

\mathsf{sin3A+8\,sin3B+27\,sin3C}

\textbf{Solution:}

\mathsf{Consider,}

\mathsf{cosA+2\,cosB+3\,cosC=0}....(1)

\mathsf{sinA+2\,sinB+3\,sinC=0}.......(2)

\mathsf{(1)+i\,(2)\,gives}

\mathsf{(cosA+i\,sinA)+2(cosB+i\,sinB)+3(cosC+i\,sinC)=0+i\,0}

\mathsf{(cosA+i\,sinA)+2(cosB+i\,sinB)+3(cosC+i\,sinC)=0}

\textsf{We know that,}

\boxed{\mathsf{If\;a+b+c=0,\;then\;a^3+b^3+c^3=3\,abc}}

\mathsf{(cosA+i\,sinA)^3+2^3(cosB+i\,sinB)^3+3^3(cosC+i\,sinC)^3=}\\\mathsf{(cosA+i\,sinA){\times}2(cosB+i\,sinB){\times}3(cosC+i\,sinC)}

\textsf{By Demovire's theorem}

\implies\mathsf{(cos3A+i\,sin3A)+8(cos3B+i\,sin3B)+27(cos3C+i\,sin3C)=6e^{iA}e^{iB}e^{iC}}

\implies\mathsf{(cos3A+8\,cos3B+27\,cos3C)+i(sin3A+8\,sin3B+27\,sin3C)=6e^{i(A+B+C)}}

\implies\mathsf{(cos3A+8\,cos3B+27\,cos3C)+i(sin3A+8\,sin3B+27\,sin3C)=6e^{i\pi}}

\implies\mathsf{(cos3A+8\,cos3B+27\,cos3C)+i(sin3A+8\,sin3B+27\,sin3C)=6(cos\,\pi+i\,sin\,\pi)}

\implies\mathsf{(cos3A+8\,cos3B+27\,cos3C)+i(sin3A+8\,sin3B+27\,sin3C)=6(-1+i\,0)}

\implies\mathsf{(cos3A+8\,cos3B+27\,cos3C)+i(sin3A+8\,sin3B+27\,sin3C)=-6+i\,0}

\textsf{Equating imaginary parts on bothsides we get}

\mathsf{sin3A+8\,sin3B+27\,sin3C=0}

\textbf{Find more}

Similar questions