Ifp (x)=x3-2x2+kx + 5 is divided by (x-2), the remainder is 11. Find k. Hence find all the zeroes of xkx2+3x +1
Answers
L=2m,
L=2m,d=3mm,A=
L=2m,d=3mm,A= 4
L=2m,d=3mm,A= 49π
L=2m,d=3mm,A= 49π
L=2m,d=3mm,A= 49π ×10
L=2m,d=3mm,A= 49π ×10 −6
L=2m,d=3mm,A= 49π ×10 −6 m
L=2m,d=3mm,A= 49π ×10 −6 m 2
L=2m,d=3mm,A= 49π ×10 −6 m 2
L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL=
L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 4
L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π
L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π
L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10
L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6
L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10
L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11
L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11
L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2
L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2
L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10
L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10 −5
L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10 −5 m=0.085mm
L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10 −5 m=0.085mm
L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10 −5 m=0.085mm .