Iftan????=1/√7, then cosec²????-sec²????/cosec²????+sec²????=
A. 5/7
B. 3/7
C. 1/12
D. 3/4
Answers
Answered by
2
C . 1 / 12
This is the correct answer.
MARK ME AS BRAINLIEST
Answered by
0
cosec²A -sec²A /cosec²A + sec²A = 3/4
Step-by-step explanation:
Given: tan A = 1/√7
Find: cosec²A -sec²A /cosec²A + sec²A
Solution:
We know that Sec²A = 1 + (1/√7)² = 1 + 1/7 = 8/7
cosec²A -sec²A /cosec²A + sec²A
= (1/Sin²A - 1/Cos²A) / (1/Sin²A + 1/Cos²A)
= (Cos²A - Sin²A) / Sin²A.Cos²A / (Sin²A + Cos²A)/Sin²A.Cos²A
= Cos²A - Sin²A / 1
= Cos²A - Sin²A
= 1/sec²A - (1 - 1/sec²A)
= 1/(8/7) - (1 - 1/(8/7))
= 7/8 - 1 + 7/8
= 7/4 - 1
= (7 - 4) / 4
= 3/4
Therefore value of cosec²A -sec²A /cosec²A + sec²A = 3/4
Similar questions