Math, asked by anjalisevani097, 8 months ago

ifx=1/2-√3,
find the value of x^3-2x^2-7x+5​

Answers

Answered by 27686vadwade
1

Answer:

x=

2−

3

1

Multiply the numerator and denominator by the conjugate of the denominator

x=\frac{1}{2-\sqrt{3}}\cdot\frac{2+\sqrt{3}}{2+\sqrt{3}}=\frac{2+\sqrt{3}}{2^2-\sqrt{3}^2}=\frac{2+\sqrt{3}}{4-3}=2+\sqrt{3}x=

2−

3

1

2+

3

2+

3

=

2

2

3

2

2+

3

=

4−3

2+

3

=2+

3

\implies\,x^2=(2+\sqrt{3})^2=4+4\sqrt{3}+3=7+4\sqrt{3}⟹x

2

=(2+

3

)

2

=4+4

3

+3=7+4

3

Now consider the given expression

\begin{gathered}x^3-2x^2-7x+5\\=x^3-7x-2x^2+5\\=x(x^2-7)-2x^2+5\\=(2+\sqrt{3})(7+4\sqrt{3}-7)-2(7+4\sqrt{3})+5\\=(2+\sqrt{3})(4\sqrt{3})-14-8\sqrt{3}+5\\=8\sqrt{3}+12-14-8\sqrt{3}+5\\=\boxed{3}\end{gathered}

x

3

−2x

2

−7x+5

=x

3

−7x−2x

2

+5

=x(x

2

−7)−2x

2

+5

=(2+

3

)(7+4

3

−7)−2(7+4

3

)+5

=(2+

3

)(4

3

)−14−8

3

+5

=8

3

+12−14−8

3

+5

=

3

Answered by sapathan
0

Answer:

answer is 3

Step-by-step explanation:

ur answer is 3

Attachments:
Similar questions