Math, asked by nandhu1095, 1 year ago

ifx^2+1/x^2=7,find the value ofx^3+1/x^3​

Answers

Answered by Anonymous
10

Answer :-

\boxed{ \sf x^{3} + \dfrac{1}{x^{3} }=18 }

Explanation :-

Given :-

 \tt  {x}^{2} +  \dfrac{1}{ {x}^{2} } = 7

To find :-

 \tt  {x}^{3} +  \dfrac{1}{ {x}^{3} }

Solution :-

First find the value of  \bf x +  \dfrac{1}{x}

 \tt  {x}^{2} +  \dfrac{1}{ {x}^{2} } = 7

Add 2 on both sides

 \tt  {x}^{2} +  \dfrac{1}{ {x}^{2} } + 2 = 7 + 2

 \tt  {x}^{2} +  \dfrac{1}{ {x}^{2} } + 2  = 9

 \tt  \implies {x}^{2} +  \dfrac{1}{ {x}^{2} } + 2 \times x \times  \dfrac{1}{x}   = 9

 \tt \implies \left( x +  \dfrac{1}{x} \right)^{2} = 9

[Since (a + b)² = a² + b² + 2ab and above a = x, b = 1/x ]

 \tt \implies x +  \dfrac{1}{x}  = \sqrt{9}

 \tt \implies x +  \dfrac{1}{x}  =3

 \tt \therefore \:  x +  \dfrac{1}{x} = 3

Cubing on both sides

 \tt \left( x +  \dfrac{1}{x}  \right)^{3}  =  {(3)}^{3}

 \tt \left( x +  \dfrac{1}{x}  \right)^{3}  = 27

We know that (a + b)³ = a³ + b³ + 3ab(a + b)

Here a = x , b = 1/x

By sustituting the values

 \tt  {(x)}^{3} + \left(\dfrac{1}{x}  \right)^{3} + 3 \times x\times  \dfrac{1}{x} \left(x +  \dfrac{1}{x} \right)=27

 \tt  x^{3} + \dfrac{1^{3} }{x^{3} }+ 3\left(x +  \dfrac{1}{x} \right)=27

 \tt  x^{3} + \dfrac{1}{x^{3} }+ 3(3)=27

[ Since x + 1/x = 3]

 \tt  x^{3} + \dfrac{1}{x^{3} }+9=27

 \tt  x^{3} + \dfrac{1}{x^{3} }=27 - 9

 \tt  x^{3} + \dfrac{1}{x^{3} }=18

\Huge{\boxed{ \sf x^{3} + \dfrac{1}{x^{3} }=18 }}

Answered by Anonymous
16

Answer:

\large \text{$(x+\dfrac{1}{x})^3=18$}

Step-by-step explanation:

Given :

\large \text{$x^2+\dfrac{1}{x^2}=9 \ ...(i) $}

Now adding 2 both side in ( i ) we get

\large \text{$x^2+\dfrac{1}{x^2}+2\times x\times\dfrac{1}{x} =7+2$}\\\\\\\large \text{Now using identity $(a^2+b^2+2a)=(a+b)^2$}\\\\\\\large \text{$(x+\dfrac{1}{x})^2=9$}\\\\\\\large \text{$(x+\dfrac{1}{x})=\sqrt9$}\\\\\\\large \text{$(x+\dfrac{1}{x})=3 \ ...(ii)$}

Now using identity

\large \text{$(a^3+b^3)=(a+b)(a^2+b^2-ab)$}\\\\\\\large \text{$(x+\dfrac{1}{x})^3=(x+\dfrac{1}{x})(x^2+\dfrac{1}{x^2}-x\times\dfrac{1}{x} )$}\\\\\\\large \text{$(x+\dfrac{1}{x})^3=(x+\dfrac{1}{x})(x^2+\dfrac{1}{x^2}-1)$}

Put value of ( i ) and  ( ii )  here

\large \text{$(x+\dfrac{1}{x})^3=(3)(7-1)$}\\\\\\\large \text{$(x+\dfrac{1}{x})^3=(3)(6)$}\\\\\\\large \text{$(x+\dfrac{1}{x})^3=18$}

Thus we get answer 18.

Similar questions