Math, asked by khushisahu472, 2 months ago

ifx=
 \sqrt{7 + 4 \sqrt{3} } then x  + 1 \div x

Answers

Answered by Anonymous
20

Answer :-

\implies\sf x = \sqrt{7 + 4\sqrt3}

\implies\sf x = \sqrt{4 + 3 + 2\times 2\times \sqrt3}

\implies\sf x = \sqrt{(2)^2 + (\sqrt3)^2 + 2\times 2\times \sqrt3}

\implies\sf x = \sqrt{(2 + \sqrt{3})^2}

\implies\sf x = 2 + \sqrt3

Calculating value of 1 / x :-

\implies\sf \dfrac{1}{x} = \dfrac{1}{2 + \sqrt3}

\implies\sf \dfrac{1}{x} = \dfrac{1}{2 + \sqrt3} \times \dfrac{2 - \sqrt3}{2 - \sqrt3}

\implies\sf \dfrac{1}{x} = \dfrac{2 -\sqrt3}{(2 +\sqrt3)(2-\sqrt3)}

\implies\sf \dfrac{1}{x} = \dfrac{2-\sqrt3}{4-3}

\implies\sf \dfrac{1}{x} = \dfrac{2-\sqrt3}{1}

\implies\sf \dfrac{1}{x} = 2 - \sqrt3

\implies\sf x + \dfrac{1}{x} = 2 + \sqrt3 + 2 - \sqrt3

\implies\sf x + \dfrac{1}{x} = 4

\boxed{\bf Value\: of\: x + \dfrac{1}{x} = 4}

Similar questions