Math, asked by michael2401gmailcom, 9 months ago

ifx+y=7/2 and xy=5/2: find x2-y2

Answers

Answered by Anonymous
1

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{The \ value \ of \ x^{2}-y^{2} \ is \ \frac{29}{4}.}

\sf\orange{Given:}

\sf{\implies{x+y=\frac{7}{2}}}

\sf{\implies{xy=\frac{5}{2}}}

\sf\pink{To \ find:}

\sf{The \ value \ of \ x^{2}-y^{2}}

\sf\green{\underline{\underline{Solution:}}}

\sf{\implies{x+y=\frac{7}{2}...(1)}}

\sf{\implies{xy=\frac{5}{2}...(2)}}

\sf{According \ to \ identity}

\sf{(a-b)^{2}=(a+b)^{2}-4ab}

\sf{\implies{(x-y)^{2}=(x+y)^{2}-4xy}}

\sf{\implies{(x-y)^{2}=(\frac{7}{2})^{2}-4×\frac{5}{2}}}

\sf{\implies{(x-y)^{2}=\frac{49}{4}-\frac{20}{2}}}

\sf{\implies{(x-y)^{2}=\frac{49-40}{4}}}

\sf{\implies{(x-y)^{2}=\frac{9}{4}}}

\sf{Taking \ square \ root \ of \ both \ sides}

\sf{\implies{x-y=\frac{3}{2}...(3)}}

\sf{Add \ equations \ (1) \ and \ (3)}

\sf{x+y=\frac{7}{2}}

\sf{+}

\sf{x-y=\frac{3}{2}}

______________________

\sf{2x=\frac{7}{2}+\frac{3}{2}}

\sf{2x=\frac{10}{2}}

\sf{2x=5}

\sf{\implies{x=\frac{5}{2}}}

\sf{Substitute \ x=\frac{5}{2} \ in \ equation \ (1)}

\sf{\frac{5}{2}+y=\frac{7}{2}}

\sf{y=\frac{7}{2}-\frac{5}{2}}

\sf{y=\frac{7-5}{2}}

\sf{y=\frac{2}{2}}

\sf{\implies{y=1}}

____________________________

\sf{\implies{x^{2}-y^{2}}}

\sf{\implies{(\frac{5}{2})^{2}+1^{2}}}

\sf{\implies{\frac{25}{4}+1}}

\sf{\implies{\frac{25+4}{4}}}

\sf{\implies{\frac{29}{4}}}

\sf\purple{\tt{\therefore{Value \ of \ x^{2}-y^{2} \ is \ \frac{29}{4}}}}

Similar questions