ii)
(1+cot theta+tan theta)(sin theta -cos theta)/
sec*3 0 -cosec*3theta
= sin*2 theta cos2theta
Answers
Answer:
Explanation:1+cot theta +tan theta(sin theta -cos theta)/sec³theta -cosec³theta
converting all in the form of sin and cos
(1+cos theta /sin theta +sin theta /cos theta)(sin theta-cos theta)÷1/cos²theta -1/sin²theta
=[cos²theta+sin²theta+sin theta +cos theta/sin theta.cos theta]×(sin theta -cos theta) ÷sin³theta-cos³theta/sin³theta.cos3theta
=(1+sin theta.cos theta/sin theta cos theta)(sin theta.cos theta)÷sin theta-cos theta)(sin²theta +cos²theta+sin theta cos theta)/sin³theta.cos³theta
=1+sin theta cos theta/sin theta cos theta×sin theta-cos theta ×sin³theta.cos ³theta /sin theta-cos theta(1+sin theta.cos theta)
=sin²theta.cos²theta
Answer:
LHS =
(1+cot theta+ tan theta)(sin theta -cos theta)/
sec*3 0 -cosec*3theta
={ (1+cos theta/sin theta + sin theta/cos theta)(sin theta-cos theta) } / {1/cos3 theta - 1/sin3 theta}
= RHS
Hence proved!