Math, asked by sonu11oct2004, 3 months ago

(ii) 2x4 -5x+3x3-3+3x2 by 2x2-x-1 divide​

Answers

Answered by bairuaryangoud
1

Answer:

(2x + 3) • (x - 1)

Step-by-step explanation:

(1): "x2"   was replaced by   "x^2".  3 more similar replacement(s).

STEP

1

:

Equation at the end of step 1

 

STEP  

2

:

Equation at the end of step

2

:

 

STEP  

3

:

Equation at the end of step

3

:

 

STEP

4

:

           2x4 - 3x3 - 3x2 + 7x - 3

Simplify   ————————————————————————

                 x2 - 2x + 1        

Polynomial Roots Calculator :

4.1    Find roots (zeroes) of :       F(x) = 2x4 - 3x3 - 3x2 + 7x - 3

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  2  and the Trailing Constant is  -3.

The factor(s) are:

of the Leading Coefficient :  1,2

of the Trailing Constant :  1 ,3

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -8.00      

     -1       2        -0.50        -6.75      

     -3       1        -3.00        192.00      

     -3       2        -1.50        0.00      2x + 3  

     1       1        1.00        0.00      x - 1  

     1       2        0.50        -0.50      

     3       1        3.00        72.00      

     3       2        1.50        0.75      

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that

  2x4 - 3x3 - 3x2 + 7x - 3  

can be divided by 2 different polynomials,including by  x - 1  

Polynomial Long Division :

4.2    Polynomial Long Division

Dividing :  2x4 - 3x3 - 3x2 + 7x - 3  

                             ("Dividend")

By         :    x - 1    ("Divisor")

dividend     2x4  -  3x3  -  3x2  +  7x  -  3  

- divisor  * 2x3     2x4  -  2x3              

remainder      -  x3  -  3x2  +  7x  -  3  

- divisor  * -x2      -  x3  +  x2          

remainder          -  4x2  +  7x  -  3  

- divisor  * -4x1          -  4x2  +  4x      

remainder                 3x  -  3  

- divisor  * 3x0                 3x  -  3  

remainder                    0

Quotient :  2x3-x2-4x+3  Remainder:  0  

Polynomial Roots Calculator :

4.3    Find roots (zeroes) of :       F(x) = 2x3-x2-4x+3

    See theory in step 4.1

In this case, the Leading Coefficient is  2  and the Trailing Constant is  3.

The factor(s) are:

of the Leading Coefficient :  1,2

of the Trailing Constant :  1 ,3

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        4.00      

     -1       2        -0.50        4.50      

     -3       1        -3.00        -48.00      

     -3       2        -1.50        0.00      2x+3  

     1       1        1.00        0.00      x-1  

     1       2        0.50        1.00      

     3       1        3.00        36.00      

     3       2        1.50        1.50      

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that

  2x3-x2-4x+3  

can be divided by 2 different polynomials,including by  x-1  

Polynomial Long Division :

4.4    Polynomial Long Division

Dividing :  2x3-x2-4x+3  

                             ("Dividend")

By         :    x-1    ("Divisor")

dividend     2x3  -  x2  -  4x  +  3  

- divisor  * 2x2     2x3  -  2x2          

remainder         x2  -  4x  +  3  

- divisor  * x1         x2  -  x      

remainder          -  3x  +  3  

- divisor  * -3x0          -  3x  +  3  

remainder                0

Quotient :  2x2+x-3  Remainder:  0  

Trying to factor by splitting the middle term

4.5     Factoring  2x2+x-3  

The first term is,  2x2  its coefficient is  2 .

The middle term is,  +x  its coefficient is  1 .

The last term, "the constant", is  -3  

Step-1 : Multiply the coefficient of the first term by the constant   2 • -3 = -6  

Step-2 : Find two factors of  -6  whose sum equals the coefficient of the middle term, which is   1 .

     -6    +    1    =    -5  

     -3    +    2    =    -1  

     -2    +    3    =    1    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -2  and  3  

                    2x2 - 2x + 3x - 3

Step-4 : Add up the first 2 terms, pulling out like factors :

                   2x • (x-1)

             Add up the last 2 terms, pulling out common factors :

                   3 • (x-1)

Step-5 : Add up the four terms of step 4 :

                   (2x+3)  •  (x-1)

            Which is the desired factorization

Trying to factor by splitting the middle term

4.6     Factoring  x2-2x+1  

The first term is,  x2  its coefficient is  1 .

The middle term is,  -2x  its coefficient is  -2 .

The last term, "the constant", is  +1  

Step-1 : Multiply the coefficient of the first term by the constant   1 • 1 = 1  

Step-2 : Find two factors of  1  whose sum equals the coefficient of the middle term, which is   -2 .

     -1    +    -1    =    -2    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -1  and  -1  

                    x2 - 1x - 1x - 1

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (x-1)

             Add up the last 2 terms, pulling out common factors :

                    1 • (x-1)

Step-5 : Add up the four terms of step 4 :

                   (x-1)  •  (x-1)

            Which is the desired factorization

Canceling Out :

4.7    Cancel out  (x-1)  which appears on both sides of the fraction line.

Canceling Out :

4.8    Cancel out  (x-1)  which appears on both sides of the fraction line.

Final result :

 (2x + 3) • (x - 1)

Terms and topics

More Icon

Related links

More Icon

Answered by madasudasu14
0

the answer is 91

Step-by-step explanation:

i hope it can help u

Similar questions