(ii) (999)3 polynomial for this sum
Answers
Answered by
1
Answer:
(999)
3
=997002999
Step-by-step explanation:
Given : Expression (999)^3(999)
3
To find : Evaluate expression using suitable identities?
Solution :
We can write the expression as
(999)^3=(1000-1)^3(999)
3
=(1000−1)
3
Now, Expand using identity,
(a-b)^3=a^3-b^3-3ab(a-b)(a−b)
3
=a
3
−b
3
−3ab(a−b)
Substitute, a=1000 and b=1
(1000-1)^3=(1000)^3-1^3-3(1)(1000)(1000-1)(1000−1)
3
=(1000)
3
−1
3
−3(1)(1000)(1000−1)
(1000-1)^3=1000000000-1-(3000)(999)(1000−1)
3
=1000000000−1−(3000)(999)
(1000-1)^3=1000000000-1-2997000(1000−1)
3
=1000000000−1−2997000
(1000-1)^3=997002999(1000−1)
3
=997002999
Therefore, (999)^3=997002999(999)
3
=997002999
Similar questions
Social Sciences,
3 months ago
Computer Science,
3 months ago
Math,
11 months ago
Biology,
11 months ago
Physics,
11 months ago