Math, asked by vishnupriya29, 3 months ago

II.
Find the perimeter and area of the rectangles with the following lengths and
breadths:
1. Length = 25 cm, Breadth = 15 cm
2. Length = 19 m, Breadth= 14 m​

Answers

Answered by punuguntapushpa08
0

Step-by-step explanation:

i hope its helpful and understand for u

Attachments:
Answered by BrainlyRish
1

Given : The Dimensions of Rectangle :

  1. Length = 25 cm, Breadth = 15 cm
  2. Length = 19 m, Breadth= 14 m

Need To Find : Perimeter and Area of each Rectangle.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀Solution of Part 1 :

  1. Length = 25 cm, Breadth = 15 cm

⠀⠀⠀⠀⠀Finding Perimeter of Rectangle :

\dag\:\cal{As,\:We\:know\:that\::}\\\\

\qquad \quad \dag\:\:\bigg\lgroup \sf { Perimeter _{(Rectangle)} = 2(l+b) }\bigg\rgroup

⠀⠀⠀⠀Here l is the Length of Rectangle & b is the Breadth of Rectangle

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \longmapsto \sf{ 2 \times (25 + 15 )  }\\

\qquad \longmapsto \sf{ 2 \times (40 )  }\\

\qquad  \longmapsto \cal{\purple {\underline { Perimeter = 80\:cm }}}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Perimeter \:of\:Rectangle \:is\:\bf{80\: cm}}}}\\

⠀⠀⠀⠀⠀Finding Area of Rectangle :

\dag\:\cal{As,\:We\:know\:that\::}\\\\

\qquad \quad \dag\:\:\bigg\lgroup \sf { Area _{(Rectangle)} = l \times b  }\bigg\rgroup

⠀⠀⠀⠀Here l is the Length of Rectangle & b is the Breadth of Rectangle

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \longmapsto \sf{ 25 \times 15  }\\

\qquad  \longmapsto \cal{\purple {\underline { Area = 375\:cm^2 }}}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Area \:of\:Rectangle \:is\:\bf{375\: cm^2}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀Solution of Part 2 :

⠀⠀⠀⠀⠀2) Length = 19 m, Breadth = 14 cm

⠀⠀⠀⠀⠀Finding Perimeter of Rectangle :

\dag\:\cal{As,\:We\:know\:that\::}\\\\

\qquad \quad \dag\:\:\bigg\lgroup \sf { Perimeter _{(Rectangle)} = 2(l+b) }\bigg\rgroup

⠀⠀⠀⠀Here l is the Length of Rectangle & b is the Breadth of Rectangle

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \longmapsto \sf{ 2 \times (19 + 14 )  }\\

\qquad \longmapsto \sf{ 2 \times (33 )  }\\

\qquad  \longmapsto \cal{\purple {\underline { Perimeter = 66\:m }}}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Perimeter \:of\:Rectangle \:is\:\bf{66\: m}}}}\\

⠀⠀⠀⠀⠀Finding Area of Rectangle :

\dag\:\cal{As,\:We\:know\:that\::}\\\\

\qquad \quad \dag\:\:\bigg\lgroup \sf { Area _{(Rectangle)} = l \times b  }\bigg\rgroup

⠀⠀⠀⠀Here l is the Length of Rectangle & b is the Breadth of Rectangle

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \longmapsto \sf{ 19 \times 14  }\\

\qquad  \longmapsto \cal{\purple {\underline { Area = 266\:m^2 }}}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Area \:of\:Rectangle \:is\:\bf{266\: m^2}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions