(ii) if sin 2a = 4 sin 2B prove that 5 tan(a - B) 3tan(a + B)
Answers
Answered by
0
Step-by-step explanation:
I think in RHs it is 3tan(a+b)This can be solved by using componendo and dividendo.sin 2a = 4 sin 2b (GIVEN)then,= > sin 2a / sin 2b = 4/1Apply Componendo – Dividendo,( sin 2a + sin 2b ) / ( sin 2a - sin 2b ) = (4+1)/(4-1){ 2 sin (a+ b). cos (a- b) } / { 2 cos (a+ b). sin (a- b) } = 5/3tan (a+ b) / tan (a- b) = 5/35 tan (a- b) = 3 tan (a+ b)Hence, Proved.
Similar questions