ii) If v1 = 3i +4j+k and v2=i-j-k,
determine the magnitude of v1 +V2.
Ans: 5
Answers
Answer:
The magnitude of is 5
Explanation:
Given vectors
And
Therefore,
Thus magnitude of the vector
Thus, the magnitude of is 5
Hope this helps.
Answer:
The magnitude of \vec v_1+\vec v_2
v
1
+
v
2
is 5
Explanation:
Given vectors
\vec v_1=3\hat i+4\hat j+\hat k
v
1
=3
i
^
+4
j
^
+
k
^
And
\vec v_2=\hat i-\hat j-\hat k
v
2
=
i
^
−
j
^
−
k
^
Therefore,
\vec v_1+\vec v_2=(3\hat i+4\hat j+\hat k)+(\hat i-\hat j-\hat k)
v
1
+
v
2
=(3
i
^
+4
j
^
+
k
^
)+(
i
^
−
j
^
−
k
^
)
\implies \vec v_1+\vec v_2=(3+1)\hat i+(4-1)\hat j+(1-1)\hat k⟹
v
1
+
v
2
=(3+1)
i
^
+(4−1)
j
^
+(1−1)
k
^
\implies \vec v_1+\vec v_2=4\hat i+3\hat j+0\hat k⟹
v
1
+
v
2
=4
i
^
+3
j
^
+0
k
^
\implies \vec v_1+\vec v_2=4\hat i+3\hat j⟹
v
1
+
v
2
=4
i
^
+3
j
^
Thus magnitude of the vector \vec v_1+\vec v_2
v
1
+
v
2
=\sqrt{4^2+3^2}=
4
2
+3
2
=\sqrt{16+9}=
16+9
=\sqrt{25}=
25
=5=5
Thus, the magnitude of \vec v_1+\vec v_2
v
1
+
v
2
is 5
Hope this helps.