(iii) (k - 3)x^2 + 4(k - 3)x + 4 = 0
for which the roots are real and equal for the equation
Answers
Answered by
0
SOLUTION:-
Given:
(k-3)x² + 4(k-3)x +4=0
Therefore,
The roots of the quadratic equation;
Ax² + Bx + C =0 compared with.
So,
⚫A= k-3
⚫B= 4(k-3)
⚫C= 4
Discriminate, D= b² -4ac=0
Now,
=) {4(k-3)}² - 4(k-3)(4)=0
=) 4(k)² +(3)² -2×k×3 - 16(k-3) =0
=) 4(k² +9-6k) -16k + 48 =0
=) 4k² + 36 -24k -16k +48 =0
=) 4k² -40k +84 =0
=) 4k² -28k -12k +84 =0
=) 4k(k-7) -12(k-7)=0
=) (k-7)(4k-12)=0
=) k-7 =0 or 4k -12 =0
=) k= 7 or 4k= 12
=) k= 7 or k= 12/4
=) k= 7 or k= 3
Hope it helps ☺️
Similar questions